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ABSTRACT 

 

Coating of fine particles to produce tailored surface properties is currently a key 

development for supercritical fluids applications, in different areas such as: 

pharmaceutical, nutraceutical, cosmetic, agrochemical, electronic and specialty chemistry 

industries. During the encapsulation process the particle surface can be designed with 

specific properties by spreading a thin film coating material over the surface of the 

particles.  

Chitosan, a natural polymer, was used in this work as the encapsulant material. 

Chitosan is biocompatible, biodegradable to normal body constituents, safe, non-toxic, 

bacteriostatic, anticancerogen, and versatile polymer. These attributes are among the 

properties that make Chitosan an attractive component of pharmaceutical products. 

The main objective of this research was to encapsulate solid particles under 5 m 

with a biopolymer, Chitosan, using supercritical CO2 as one of the solvents. In order to 

reach this goal, some the following initial tasks were completed: the cloud point for the 

system DMSO-CO2 was determined and compared with published data to validate the 

experimental system. Subsequently the cloud point experiments were extended to include 

the ternary system Chitosan-DMSO-CO2, and a dynamic solubility experimental set-up 

was constructed and used to obtain solubility data for the same ternary system. 

A novel SCF fluidized bed was used to micro encapsulate porous (TiO2) and non-

porous particles (CaO) through a temperature swing with a Chitosan thin layer. DMSO 
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was used as an entrainer to enable solubilization of Chitosan and removed within the 

supercritical carbon dioxide.  

Several analytical methods were used to characterize these particles; SEM-EDS 

analysis was used to evaluate a group of particles, determining composition and particle 

diameter on samples up to 900 particles. TEM and AFM confirmed particles of one 

micron or less were encapsulated with a thickness of less than 5 nm. AFM shows particle 

roughness on the nanometer range, 46 nm or more for uncoated particles and 2-4 nm for 

the encapsulated ones.  

FTIR, NMR and DSC-TGA analysis confirmed that the chemical structure of 

Chitosan remained constant before and after processing, and the changes observed were 

attributed to some DMSO and moisture adsorbed during the encapsulation process.  
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CHAPTER 1 

INTRODUCTION  

 

Encapsulation of fine particles to produce modified surface properties have 

extensive applications in different industries, such as pharmaceutical, nutraceutical, 

cosmetic, agrochemical, electronic and specialty chemistry industries. During the 

encapsulation process, the particle surface can be designed with a specific physical and/or 

chemical property by coating the surface of the particle with a thin film of encapsulant 

material. As a result, the flow-ability, dissolution rate, controlled release, masking, 

dispersability, chemical reactivity and hydrophilicity of particles can be modified to tailor 

specific applications. Encapsulated particles have a significant application in targeting 

and controlled release of therapeutic products, genes and other bioactive agents. This 

could be attributed to the fact that controlled release systems provide the benefits of 

protection from rapid degradation, targeting delivery, controlled release rate, and 

prolonged duration of bioactive agents (Benita S. 2006, Onwulata C. 2005).  

There are several encapsulation technologies available, which can be classified 

into two categories:  

- Physical methods: vibrating nozzle, spinning disk, pan coating, fluidized bed, freeze-

drying, and spray drying being among the most frequently used methods. 

- Chemical methods: coacervation, phase separation, interfacial polymerization, in situ 

polymerization and sol–gel methods.  All of these have a common characteristic: 
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large amounts of organic solvents, surfactants, and other additives, which lead to 

volatile organic compound (VOC) emissions and other waste streams. Additional 

drawbacks include low encapsulation efficiency, toxic residual solvents in the end 

products, what usually leads to further processing, putting in risk the fragile structure 

of some chemicals or biochemical ingredients.  

Spinning disk is an atomization method that involves the formation of a 

suspension of core particles in the coating liquid and the passage of this suspension over 

a rotating disk under conditions that generate a coating film much thinner than the core 

particle size. This technology was considered very promising for particles on the micron 

size range because the results were comparable to regular spray drying or freeze drying. 

On the other hand, scaling up would involve the construction of multi-head small nozzles 

which can certainly be a source of frequent clogging problems. 

Freeze drying works under the fundamental principle of sublimation. The material 

to be preserved is frozen, and then lowering the atmospheric pressure below 0.06 atm, the 

ice turns directly into water vapor. The water vapor flows out of the freeze-drying 

chamber. This continues for a long period of time until the material gradually dries out.   

Spray drying assembly requires a feed pump, an atomizer, an air heater, an air 

disperser, a drying chamber, and systems for exhaust air cleaning and powder recovery. 

An aqueous solution is sprayed as fine droplets into hot air, evaporating the water, and 

the dried solid is separated. This method and the regular fluidized beds have problems 

when fluidizing particles smaller than 100 m, due to electrostatic forces that make 

fluidization difficult. Another problem involved with these methods is the atomization of 

the coating material, since droplets must be significantly smaller than the particle to be 
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coated in order to achieve uniform and complete coating while avoiding agglomeration. 

Atomizing droplets at 10-100 nm is a demanding engineering problem (Gouin S. 2004). 

Coacervation is a colloid phenomenon that consists of the phase separation into 

colloid-rich and colloid-poor layers, which requires large amounts of solvents. It is 

initiated by creating a perturbation: changing the temperature, the pH or adding a 

concentrated aqueous ionic salt solution or a non-solvent. The final step for 

microencapsulation is the hardening of the coacervate wall and the separation of the 

microcapsules, which generally is the toughest step in the total process, requiring a long 

processing period. 

For many years there has been continuous interest in replacing conventional 

organic solvents with environmentally friendly fluids in different chemical processes. 

Supercritical carbon dioxide (SCCO2) became known as an excellent candidate due to its 

characteristics and properties: it has mild critical conditions (Tc = 304.1 K, Pc= 7.38 

MPa) and is low cost, non-toxic, non-flammable, highly available and easily recycled. 

Finally, its most remarkable advantage is the fact that it shows gas-like diffusivities and 

liquid-like densities (McHugh and Krukonis, 1994). Supercritical carbon dioxide 

(SCCO2) was used initially as a solvent or in other processing areas like supercritical 

extraction and separation; however, more recent applications are in particle formation and 

encapsulation. 

During the past decade, supercritical fluid processes such as RESS (rapid 

expansion of supercritical solutions) (Tsutsumi 1995, Wang T. J. 2001, Wang Y. 2002; 

Mishima K. 2000, Kim J. H. 1996, Tsutsumi A. 2003, Matsuyama K., 2003a, Sun Y. P. 

1998, Matsuyama K. 2003b), gas antisolvent (GAS), and precipitation with a compressed 
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fluid antisolvent (PCA) (Falk, 1997; Young, 1999), also known as aerosol solvent 

extraction system (ASES) (Bleich, 1996) or supercritical antisolvent technique (SAS) 

(Wang Y., 2004; Wang Y., 2005; Elvassore, 2001; Duarte, 2006) have attracted 

increasing attention for particle encapsulation. 

Some of the reasons that make supercritical encapsulation techniques an attractive 

option are: 

- It is an environmentally benign technology, since the supercritical solvent used can be 

recovered at the end of the encapsulation process and recycled. 

- It is a one step process where the core material is enclosed by the encapsulant and 

with a simple adjustment of the operation conditions; the supercritical solvent is 

released obtaining a clean final product. 

- The selective solvatin power makes it possible to modulate the separation of a 

particular component from a multi-component mixture. 

- The high solubility of cosolvents in the supercritical solvent make the drying of the 

microparticles rapid and efficient with a low level of residual solvent, as requested by 

the FDA. 

- The carbon dioxide inactivates a wide variety of bacterial organisms in the absence of 

oxygen and in a slight acidic environment, generating a sanitized and sterile final 

product. 

- The fact that supercritical fluids have zero surface tension and low viscosity promotes 

coverage of porous materials. 

It is important to emphasize that encapsulated particles have many significant 

advantages, but there are some potential disadvantages that cannot be ignored: the 
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possible toxicity of the solvents used, biocompatibility of the coating material, 

undesirable by-products of degradation, the chance of patient discomfort (in 

pharmaceutical and cosmetic applications), and the higher cost of controlled release 

systems compared with traditional formulations. These are some of the reasons that have 

been driving a significant amount of interest to switch to biodegradable polymers, which 

degrade as a result of natural biological processes. Most biodegradable polymers degrade 

through hydrolysis of the polymer chains to biologically acceptable and progressively 

smaller compounds. In some cases (i.e. poly-lactides, poly-glycolides and their co-

polymers), the polymers will eventually break down to lactic acid and glycolic acid, 

entering the Kreb‟s cycle and break down into carbon dioxide and water. 

Today the polymer industry offers a broad selection of biodegradable polymers 

with unique characteristics for different applications, depending on the time delivery 

range, the targeting objective (organ or cell) and the delivery pH (Brannon-Peppas 1997, 

Middleton and Tipton 1998).  

One of the most difficult tasks in this research was finding a natural and versatile 

biopolymer, soluble on physiological pH, and non-toxic. Chitosan oligosaccharide 

lactate, which is a modified carbohydrate polymer derived from chitin deacetylation, 

meet all these requirements. Chitin is the second most abundant natural polysaccharide 

commercially derived from crustaceous shells (Muzzarelli 1973).  

Some biopolymers frequently used in particle encapsulation, such as poly-(D-

lactide) (PDLA), poly-(L-lactide) (PLLA), poly-(DL-lactide-co-glycolide) (PGLA), 

Dextran, Inulin and poly vinyl alcohol (PVA), are insoluble in pure SCCO2. For this 

reason different authors (Bleich 1996, Mishima 2000, Reverchon 2000, Elvalssore 2001, 
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Matsuyama 2003, Perez de Diego 2004) have been studying and processing these 

polymers with the assistance of a cosolvent, creating a ternary system, polymer-

cosolvent-SCCO2.  

Selecting the proper cosolvent for any solubility process is a important step, as it 

can significantly influence and determine the homogeneity of the mixture, and the degree 

of dissolution of the solute into the given cosolvent. DMSO was chosen as a cosolvent for 

this work because it is able to solubilize the solid biopolymer Chitosan, as well as it is 

soluble in supercritical carbon dioxide, a basic requirement for any supercritical 

micronization or coating process (Rajasingam 2004, Kordikowski 1995, Yeo S. 1993, 

Reverchon 1998). 

The objective of this research was to encapsulate dry powder particles with 

diameters on the micron and sub-micron range using a green, controllable and scalable 

technique (Supercritical Fluid Technology) in order to obtain a uniform and controllable 

coverage of particles with the chosen biopolymer. 

To be able to pursue this objective, specific steps were followed in a logical and 

organized sequence. 

Chapter 2 provides the fundamental thermodynamic background necessary to 

develop and analyze a supercritical encapsulation process. Phase equilibrium principles, 

recognized experimental methods for solubility measurement in supercritical fluids, 

phase diagrams for binary, ternary and polymer systems under supercritical conditions, 

and a brief introduction to biopolymers are discussed here.  

In Chapter 3, a broad review of different supercritical particle encapsulation 

techniques published is presented. These techniques were classified based on the fact that 
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the encapsulation systems can be homogeneous or heterogeneous and that the 

supercritical carbon dioxide can be used as a solvent or an antisolvent.  

Chapter 4 is a compendium of the properties and specific characteristics of all the 

chemicals used for this work, including the supercritical solvent, the cosolvent, 

encapsulant and core material. As there is not much information available for the 

encapsulant material, and having an original encapsulation technique, the selection of 

well characterized and economic core material like calcium oxide (non-porous) and 

titanium dioxide (porous) was a requirement. The information presented in this chapter 

comes from literature data and direct experimental analysis. 

In Chapter 5, all the experimental systems employed during this research are 

described in full detail. In total, three different set-ups were required. The first one is a 

static solubility set-up, used to establish the experimental cloud point for the binary 

system DMSO-CO2 and for the ternary system Chitosan-DMSO-CO2. As there was no 

data published for this particular ternary system, another set of experimental data is used 

to confirm these previous results, and an extraction cell is built to obtain dynamic 

solubility data. The final set-up presented is the encapsulation one, a 60 ml supercritical 

fluidized bed designed and built to encapsulate micron and sub-micron particles using a 

temperature perturbation technique. Diagrams and detailed experimental procedures are 

presented. 

 Chapter 6 includes the experimental results for the solubility and cloud point for 

the DMSO-SCCO2 and Chitosan-DMSO-SCCO2 system, as well as the encapsulation 

results and coating characterization. In the beginning of this chapter, the cloud point data 

for the binary system DMSO-SCCO2 obtained during this research is presented and 
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compared with some published information, after which some novel Chitosan-DMSO-

SCCO2 experimental data is shown, including cloud point and dynamic solubility results. 

Based on these results, the encapsulation conditions are established, showing the T-P 

effect over the encapsulant and final product. Multiple characterization techniques are 

followed in order to confirm the presence of Chitosan as encapsulant material and 

establish the quality of the final product. All these results are discussed in this chapter. 

Techniques like FTIR and EDS are employed to confirm the presence of Chitosan on the 

encapsulated sample; SEM, TEM and AFM are used to evaluate the particles before and 

after the encapsulation process in order to determine the quality of the proposed method 

and NMR, DSC-TGA are utilized to characterize the polymer coating before and after 

being processed.  

Finally, the conclusions for all the steps followed in this dissertation are presented 

in Chapter 7, as well as recommendations for future work, as in all research, one door 

leads to many other doors. 
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CHAPTER 2 

THERMODYNAMIC BACKGROUND 

FOR SUPERCRITICAL ENCAPSULATION 

 

 In this chapter, a brief introduction to supercritical fluids, measurement 

techniques, and phase diagram models will be presented, as a fundamental knowledge 

basis to develop a micro-encapsulation process under a supercritical environment. The 

solubility measurement techniques are presented as they are usually referred to in the 

literature, as well as the phase diagrams for binary and ternary systems shown. Polymers 

and biopolymers in supercritical fluids will be introduced at the end of this chapter, since 

they are the most commonly used coating material in particle encapsulation. 

 

2.1. Supercritical Fluids 

 When talking about pure components, supercritical refers to the condition where 

the temperature and pressure pass the critical point at which the phase boundaries 

disappear. A supercritical fluid (SCF) is defined as a substance above its critical 

temperature (TC) and critical pressure (PC). The critical point (CP) represents the highest 

temperature and pressure at which the substance can exist as a vapor and liquid in 

equilibrium. The phenomenon can be easily explained by looking at the phase diagram 

for pure carbon dioxide (Figure 2.1). 
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Figure 2.1. Phase Diagram for Carbon Dioxide 

 

SCF technology has been in commercial use for more than 40 years as an 

environmentally benign, and energy-cost effective tool in a variety of industries, such as  

the decaffeination of coffee and tea (Vitzthum 1975) and for the extraction of flavors and 

essential oils from natural sources (Rizvi 1994, Grandison 1996). SCF technology is 

building its path in several pharmaceutical industrial operations, including product 

sterilization, crystallization, particle size reduction, coating, encapsulation and the 

preparation of drug delivery systems. It has also been shown to be a feasible option in the 

production of granular drug delivery systems, such as microparticles and nanoparticles, 

liposomes and encapsulated complexes, which control drug delivery and/or enhance drug 

stability.  
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There are advantages when working with supercritical fluids, for example: 

- The fact that the critical temperature of carbon dioxide is close to ambient 

temperature makes it possible and safe to process heat-labile compounds. 

- SCF functions as solvent for aliphatic hydrocarbons with chains of 20 carbons or less 

and for nearly all aromatic hydrocarbons. 

- It can be used with cosolvents, such as methanol and acetone to enhance the solubility 

of polar solutes.  

- Organic solvents, such halocarbons, aldehydes, esters, ketones, and alcohols are 

freely soluble in supercritical CO2, facilitating the extraction of organic solvents.  

Carbon dioxide can be used in two different ways: as a solvent or an antisolvent, 

depending on if the purpose is to coat particles or just to make particles by precipitation. 

For coating purposes, coverage of porous particles benefits from this particular solvent, 

since the diffusion coefficients of organic solvents in supercritical CO2 are typically one 

or two orders of magnitude higher than in conventional organic solvents, making porous 

impregnation with controlled morphology and narrow particle size distribution (Table 

2.1). 

Carbon dioxide is non-toxic, non-flammable, inexpensive and recyclable. After 

finishing the chemical process, it can be separated completely from the final product by 

expanding it, and then liquefied for recycling purposes. 

Supercritical fluids (SCF) can be applied on the production of pure active 

ingredient particles or a mixture of active ingredients and excipients (polymer or lipid 

carrier). The density and the solvent power of SCF could be adjusted significantly 

through a small perturbation of temperature and/or pressure around the critical region to 
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tailor the product characteristics. SCF can even be used to coat therapeutic particles with 

single or multiple layers of polymers or lipids, by preparing a coating solution in SCF and 

choosing the adequate temperature and pressure conditions that do not solubilize the core 

material being coated. 

 

Table 2.1. Fluid Properties for Different Pure Components Phases 

 

Medium 

Properties 

 

Gases
(1)

 

 

Liquids
(1)

 

Supercritical 

Fluids 

Tc, Pc Tc, 4
2

cP  

Density, ml/g  (0.6-2.0) x 10
-3

 0.6 – 1.6 0.2 – 0.5 0.4 – 0.9 

Diffusivity, s/cmD 2
 (1.0-4.0) x 10

-1
 (0.2-2.0) x 10

-5
 0.7 x 10

-3
 0.2 x 10

-3
 

Dynamic viscosity, 

scm/g  
(1.0-3.0) x 10

-4
 (0.2-3.0) x 10

-2
 (1.0-3.0) x 10

-4
 (3.0-9.0) x 10

-4
 

Surface tension,  

(dynes/cm) 
- 10-400 - - 

Thermal conductivity, k 

(W/m K) 
10

-2
 10

-1
 10

-1
 10

-1
 

(1) Ambient conditions, (2) Conditions where pressure is four times higher than the critical pressure. 

(Bruce E. Poling, John M. Prausnitz, John O' Connell, 2000) 

 

2.2. Solubility in Supercritical Fluids 

The solvent power of supercritical fluids is a function of pressure and 

temperature. For this reason, the solubility power can be adjusted to solubilize or separate 

solutes and solvents by manipulating the operation conditions. Usually, the solvent power 

of a supercritical fluid increases with density and vice versa. Density can be reduced by 

decreasing the pressure or increasing the temperature. 

http://www.mhprofessional.com/contributor.php?id=24786
http://www.mhprofessional.com/contributor.php?id=12065
http://www.mhprofessional.com/contributor.php?id=12066
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For extraction or desorption purposes, different authors (Tan and Liou 1988 and 

1989, Modell 1978) found that higher pressures at fixed temperatures promote these 

phenomena. The solvency power of supercritical fluids is enhanced as the fluid density 

increases with pressure increments at a given temperature, which is favorable for 

desorption, extraction or regeneration processes. 

Pressure reduction at constant temperature leads to lower concentrations of the 

dissolved substances, causing precipitation of dissolved substances due to the lower 

density. In the same order of ideas but now considering the temperature effect, the 

density is reduced by temperature augmentation at constant pressure. 

When working with mixtures of multiple solutes at supercritical conditions, the 

isotherms will intersect at the crossover points due to pressure adjustments, as illustrated 

in Figure 2.2 (Chimowitz 1986). For that reason, separation processes for solid mixtures 

can be designed in which the separation conditions will be located between the crossover 

points of the two species. For example, in Figure 2.2, consider a gas phase at a pressure 

Po, intermediate to crossover points P1* and P2*, which is cooled from temperature TH 

(High Temperature) to TL (Low Temperature). Note that the solubility of component 2 

increases, while solubility of component 1 decreases. As an example, consider a process 

in which a mixture of components 1 and 2 are extracted at Po and TH, and separated by a 

simple temperature decrease to TL.  This approach can be extended to multicomponent 

mixtures. 
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Figure 2.2. Crossover Phenomena for Multiple Solutes Mixtures. (Chimowitz, 1986)  

  

The observed retrograde behavior for solubility of multicomponent solute 

mixtures is similar to the retrograde effects of pressure and temperature observed in 

sorption processes (Figure 2.3). As was presented by Tan and Liou 1990a and 1990b, the 

system Toluene-CO2-Activated Carbon and Benzene-CO2-Activated Carbon show 

crossover of the equilibrium loadings at different temperatures and relatively high 

pressure. The pressure at which the crossover occurred increased with the supercritical 

phase concentration for both components. This behavior was modeled by Akman and 
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Sunol 1991, by coupling supercritical sorption isotherms with a conventional fixed bed 

desorber model, where a high-density favored desorption was predicted.  

 

Figure 2.3. Crossover Phenomena in a Desorption Process. (Akman and Sunol, 1991) 

 

2.3. Experimental Techniques for Solubility Measurements in Supercritical Fluids 

The solubility of a solute in a supercritical fluid (SCF) is probably one of the most 

important thermo-physical mixture properties. The solubility information is desirable for 

the determination of Equation of State (EOS) interaction coefficients to allow prediction 

of the phase distribution of the solute. This information is used to understand the 

temperature-pressure dependence of the solubility in order to determine the appropriate 

operation conditions for process components such as extractors and separators.  

To determine the feasibility of an encapsulation process, it is necessary to have 

the solubility of the encapsulant and the core material in the SCF. This data is not always 

available and some experimental determination of the data could be required. There have 

been a number of different approaches developed for the measurement of solute solubility 

for pure or multicomponent SCFs. These techniques are either dynamic, where the solute 
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is continually removed within SCF at equilibrium conditions, or static, where known 

amounts of solute and solvents are preloaded into a cell where the pressure, temperature 

and/or volume can be adjusted to obtain the cloud point or equilibrium condition. 

 

2.3.1. Dynamic Solubility Measurements for Supercritical Fluids 

The diagram of a flow apparatus similar to the one used to determine the 

solubility of Chitosan in SCF is shown in Figure 2.4. In this system, the SCF is loaded to 

the system with a high pressure pump and compressed to the desired operating pressure.  

 

 

Figure 2.4. General Diagram of a Dynamic Flow Set-Up.  

 

After leaving the pump, the SCF flows through a preheater within the constant 

temperature bath; this ensures that it reaches the required temperature before it contacts 

the heavy solute carefully preloaded into the equilibrium cell.  
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After the saturated SCF-rich phase exits the column, it is expanded at atmospheric 

pressure. The heavy component falls out of the solution and is collected in a cold trap.  

The advantages and disadvantages of using a dynamic flow system are listed in Table 2.2. 

 

Table 2.2. Evaluation of Dynamic Solubility System. 

Advantages 

Off-the-shelf equipment is used 

Large amounts of solubility data can be obtained 

Equilibrium, stripping, or fractionation data can be obtained 

A simple sampling procedure can be used 

Disadvantages 

At high pressure the density of the SCF-rich phase can become greater than the density of the 

solute-rich liquid phase, pushing out the liquid phase and causing inaccurate solubility data 

Undetected phase changes can occur in the column, such as: solid liquid, liquid1  liquid1+ 

liquid2 

Cannot be used to determine solubility of liquid solutes 

When running multi-component mixtures, extra care should be taken to avoid completely 

depleting one or more of the components.  

A heavy solute can clog the system and cause erroneous solubility data. 

 

2.3.2. Static Solubility Measurements for Supercritical Fluids 

Figure 2.5 shows a diagram of a typical static view cell apparatus used to obtain 

solubility information (McHugh 1984 and 1985, Seckner 1988). The main component of 

this system is a high-pressure, variable-volume, view cell. This cell allows visual 

determination of the phases present at equilibrium. 

The cell is initially loaded with a measured amount of solute (liquid or solid), 

after which a known amount of SCF is pumped into the cell. Then, keeping the 

temperature constant, the mixture in the cell is compressed to a single phase by adjusting 
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the volume. The reported solubility data point is the pressure interval between the two-

phase state and the single fluid-phase state. 

The mixture critical point is defined by the pressure and temperature at which 

critical opalescence is observed for a slight change in either pressure or temperature.  

 

Figure 2.5. General Diagram of a Static View Cell Set-Up. 

 

The advantages and disadvantages of a variable volume view cell apparatus are 

presented in Table 2.3. 

Table 2.3. Evaluation of Static Solubility System. 

Advantages 

The phase transitions are also determined visually, and phase inversions are easily detected. 

The solubility of solids and liquids in binary mixtures are obtained without sampling. 

Heavy solids, liquids and polymers can be studied. 

Minimum amounts of chemical components or SCF are used in an experiment. 

The pressure of the mixture can be continuously adjusted at a fixed composition and temperature. 

Disadvantages 

SCF fractionation data are not easily obtained. 

Just one sample mix can be studied per loading 
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2.4. Phase Equilibria 

An understanding of the phase equilibrium of mixtures is fundamental for the 

design of supercritical fluid processes. Accurate high pressure equilibrium data for multi-

component systems are difficult to obtain and time consuming; therefore it would be 

ideal to be able to predict it from pure component properties. However, it is possible to 

make such predictions in all cases, so it is useful to correlate and extrapolate limited 

experimental data. 

Before describing the characteristics of the phase diagrams, it is helpful to 

remember the Phase Rule. The Phase Rule describes the possible number of degrees of 

freedom in a (closed) system at equilibrium, in terms of the number of separate phases 

and the number of chemical constituents in the system. The phase rule not only gives the 

number of independent variables that should be fixed to define a multiphase, multi-

component mixture, it also specifies the topology of the phase diagrams used to represent 

that behavior. This explanation is represented in Table 2.4 (McHugh and Krukonis, 

1994). 

Table 2.4. Summary of the Geometrical Features  

of Phase Diagrams for One and Two Components. 

 

Number of Equilibrium Phases 

 

 

Degrees of 

Freedom 

 

Geometrical 

Features One Component 

System 

Two Component 

System 

3 4 0 Points 

2 3 1 Lines 

1 2 2 Surfaces 

- 1 3 Volumes 
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Phase diagrams are essential instruments for the study of supercritical mixtures, 

due to the high level of complexity of the intermolecular interactions in dense fluids that 

makes solubility calculations difficult and not always reliable. This is why understanding 

the possible types of phase diagrams applicable for the mixture of interest, can help 

minimize the amount of experimental work needed to determine the solubility levels over 

wide ranges of temperature and pressure. 

 Before describing the possible phase diagrams for supercritical systems, some 

phase transition definitions commonly used are presented in Table 2.5. 

 

Table 2.5. Definitions of Phase Transitions Occurring at High Pressures. 

Abbreviation Transition Description 

LCST 

Lower Critical 

Solution 

Temperature 

a) Temperature at which two liquids merge to form a single 

liquid phase as the system temperature decreases at constant 

pressure. 

b) Temperature at which the transition described in (a) takes 

place in the presence of a gas phase.  

UCST 

Upper Critical  

Solution 

Temperature 

Temperature at which two liquids merge forming a single liquid 

phase when the system temperature is ramping up; the UCST takes 

place at a lower temperature than the LCST. 

UCEP 
Upper Critical 

End Point 

a) For systems solid-SCF, the UCEP is the point at which the 

liquid and the gas phase merge to form a single fluid phase in 

the presence of a noncritical solid phase. 

b) For systems liquid-SCF, the UCEP takes place at the 

intersection of the UCST curve and a three-phase liquid-

liquid-vapor; the UCEP is also the intersection of the LLV 

line with the lower temperature branch of the critical mixture 

curve. 

LCEP 
Lower Critical 

End Point 

For systems solid-SCF, the LCEP takes place when a liquid and a 

gas phase merge to form a single fluid phase in the presence of a 

noncritical solid phase. 

(McHugh and Krukonis, 1994) 
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When operating at supercritical conditions, it is recommended to keep away from 

regions of multiple phases in pressure-temperature-composition space, such as: liquid-

liquid-vapor (LLV), solid-liquid-vapor (SLV) or solid-solid-vapor (SSV) equilibrium; 

because when these regions of multiple phases are projected onto a two dimensional P-T 

diagram, their geometrical representations are simplified, since the pressure and 

temperature (field properties) are the same in each of the equilibrium phases. 

 

2.5. Phase Diagrams for Binary Mixtures 

 McHugh and Krukonis have found that many of the behaviors observed in phase 

diagrams for multi-component mixtures are very similar to the phase diagrams for binary 

mixtures, even if the components vary in molecular size, shape, structure and/or attractive 

potential. Following their classification, a description of the phase diagrams for a 

supercritical solvent and a single solute are presented in this section.  

 

2.5.1. Type I 

The phase diagram for a Type I system is shown in Figure 2.6, which illustrates 

the behavior of a binary system with respect to temperature, pressure and composition by 

using three-and two-dimensional plots. This phase equilibrium is characteristic for binary 

systems conformed by a supercritical component and a compound of medium volatility, 

or components with similar molecular diameter and/or similar interaction forces. 

The light component (lower molecular weight) will be identified with number 1, 

while the heavy component (higher molecular weight) will be identified with the number 

2. When evaluating the interval where the molar fraction of the heavy compound (2) 
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varies from x=0 to x=1, the vapor-pressure curves for components 1 and 2, they separate 

into gas and liquid regions. The vapor pressure curves end at the critical point of each 

component, TC1 and TC2. The critical curve, symbolized by the broken line in Figures 

2.6a and 2.6b, connects the critical points and limits the two-phase region. 

The molar composition of the heavy compound is denoted by x, T1 is a 

temperature below the critical temperature of the components and T2 is a temperature 

above the critical temperature of the light component (1). 

Figure 2.6c shows that a single vapor phase will exist at very low pressures with 

an equilibrium composition x* at a temperature T1 <TC1. As the pressure is isothermally 

increased a two-phase vapor-liquid envelope is formed and the liquid phase becomes 

visible. The equilibrium composition of the vapor and liquid phases will be given by the 

horizontal tie lines in the envelope. As the pressure is increased continuously while 

keeping the temperature constant at a fixed composition (x*), the amount of the liquid 

phase increases while the amount of the vapor phase decreases until only a small bubble 

of vapor remains, and finally the bubble of vapor disappears, turning into a single liquid 

phase. 
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Figure 2.6. Phase Diagram Type I for a Binary Mixture. (a) P-T-x, (b) P-T, (c, d) P-x.    

  

 Next, as the temperature is raised to T2, where T2 >TC1, just the right end of the 

molar composition x will be observed, as showing in Figure 2.6d. In this plot the left-

hand side of the vapor-liquid does not touch the pressure axis; at the equilibrium 

composition x* in Figure 2.6d, the vapor-liquid envelope is intersected along the dew 

point curve at low pressures. As the pressure is raised, the vapor-liquid envelope is 

intersected at its highest pressure, which corresponds to the mixture critical point at T2 

and x*. This mixture critical point is identified with the intersection of the dashed curve 

in Figure 2.6b and the vertical isotherm at T2. At the critical mixture point, the dew point 

and bubble point curves concur and all the properties at each of the phases becomes the 

same. 
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2.5.2. Type II 

 This type of behavior is presented in Figure 2.7. It is similar to the Type I system, 

in that the critical mixture curve is a continuous curve between the critical points of the 

two pure components (1 and 2). However, at low temperatures, liquid-liquid phase 

separation occurs, resulting in a liquid-liquid-vapor (LLV) line in Figure 2.7a. This LLV 

equilibrium line intersects the liquid-liquid critical line (Figure 2.7b) at an UCEP (upper 

critical end point). At this point, the two liquid phases become identical in the presence of 

a vapor phase. Only liquid-liquid equilibria exist at pressures higher than the colored 

surface, representing equilibrium of the three phases (Figure 2.7b).  

The P-T group of liquid-liquid critical points is known as upper critical solution 

temperature (UCST) and is not affected by pressure changes; it is just a function of 

temperature for a given composition. 

 

Figure 2.7. Phase Diagram Type II for a Binary Mixture. (a) P-T, (b) P-T-x. 
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2.5.3. Type III 

This type of diagrams corresponds to a system in which the critical properties of 

the two mixture components are significantly different, as a result of a different 

molecular weight, structure and/or intermolecular forces between the molecules. 

 The Type III diagram (Figure 2.8b) differentiates from Types I and II in that it has 

a LLV region very close to TC1. The Te branch of the critical line that starts at TC2, 

symbolized as usual as a dotted line, intersects the LLV line at the low-temperature end 

known as Lower Critical Solution Temperature (LCST).  

 

Figure 2.8. Phase Diagram Type III for a Binary Mixture. 

(a) P-T-x  , (b) P-T , (c) P-x , (d) P-x , (e) P-x. 
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The other branch of the critical mixture temperature, which starts at TC1, intersects 

the LLV line at the high temperature end known as Upper Critical End Point (UCEP), as 

can be observed in the P-T diagram of Figure 2.8b. 

 From Figure 2.8a, it can be seen that the P-T diagram at T1, a temperature below 

the LCST, is similar to the one described for the Type I system in Figure 2.6c. When the 

temperature is raised to T2, where T2 < LCST, the isotherm drawn at this specific 

temperature just misses the LLV line. Then in Figures 2.8a and 2.8c, a particular 

envelope shape is observed, where the single liquid phase is almost divided into two 

liquids to form a three phase LLV system. 

 When the temperature is slightly incremented to T3, the LLV line will be 

intersected, as shown in Figures 2.8b and 2.8d, indicating that two liquids have been 

formed in the presence of a vapor phase. At low pressures, a single vapor phase exists. As 

pressure is raised, the dew point line of the liquid-vapor envelope is intersected and a 

liquid phase is formed. If the pressure is increased and the overall mixture composition is 

less than x*, a vapor-liquid envelope is obtained. If the overall mixture composition is 

greater than x*, a liquid-liquid envelope is observed. At T3, two critical points are 

observed, one at the top of the vapor-liquid envelope (TClv) and the other at the top of the 

liquid-liquid envelope (TCll). 

 When temperature is raised to T4 = UCEP, Figure 2.8e shows the P-x diagram 

expected. This isotherm intersects the vapor pressure curve for the less volatile 

component, the high-temperature end of the LLV line (UCEP) and the critical mixture 

curve. At low pressure, a single vapor phase exists. As the pressure is isothermally 

increased the dew point curve is intersected, revealing a single liquid-vapor phase. 
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2.5.4. Type IV 

 This type of system (Figure 2.9) is obtained when the differences in size, structure 

or strength of the intermolecular forces between the two mixture components are 

remarkably larger than in the Type III system. 

 

Figure 2.9. Phase Diagram Type IV for a Binary Mixture.  

(a) P-T-x  , (b) P-T , (c) P-x , (d) P-x , (e) P-x. 
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 At T1, the LLV line and the pressure curve of the component 1 are intersected, but 

at T2, the LLV line is intersected and not the pressure curve of the more volatile 

component (Figure 2.9b). At pressures higher than the LLV pressure Figures 2.9c and 

2.9d show that at concentrations greater than x* the liquid-liquid envelope does not 

exhibit a closed dome with a mixture critical point. 

 The diagram is presented in Figure 2.9e shows the phase behavior when the 

temperature is higher than the UCEP temperature (T3). Two phases exist as the pressure 

increase. The two branches of the vapor liquid phase envelope start getting closer in 

composition at an intermediate pressure, as a mixture critical point may occur; but as the 

pressure increases, the two curves begin to diverge. 

 When the temperature is raised towards T4 the vapor-liquid envelope gets closed, 

resulting in a mixture critical point (CP) at a moderate pressure. If the pressure values 

become greater than the mixture critical pressure then a single fluid phase will exist at T4. 

If the pressure is increased further than the mixture critical pressure, a single fluid phase 

splits into two phases. Figure 2.9f shows the two-phase regions with their tie lines and 

two mixture critical points (CP) at T4, depending on the overall composition of the 

mixture. One critical point occurs at the maximum of the vapor-liquid envelope as the 

pressure is increased isothermally from low to a moderate value, while the other mixture 

critical point (CP) occurs at the minimum of the fluid-liquid envelope at higher pressures. 
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2.5.5. Type V 

 As shown in Figure 2.10, this phase behavior is very similar to the previously 

described Type III system; but in Type V phase behavior, there is no region of liquid 

immiscibility at temperatures below LCST. 

 

Figure 2.10. Type V P-T Phase Diagram.  

 

2.5.6. Type VI 

 This type of equilibria is the only one that cannot be described by van der Waals 

equation of state, since the components involved in these systems develop hydrogen 

bonding. In these particular systems a continuous, gas-liquid critical curve and a liquid-

liquid critical curve intersects the LLV line at UCEP and LCEP points (Figure 2.11). 

This phase behavior is found in systems with specific chemical interactions, like 

water-alcohol. It consists of a liquid-vapor critical line connecting the two critical points 

of the pure components TC1 and TC2, and a LL immiscibility critical line with a maximum 

pressure connecting both UCEP and LCEP of the same three-phase line. Another 

possibility is the existence of a second LL critical curve at high pressure with a pressure 

minimum; this phenomenon is called high pressure immiscibility. Also, the low-pressure 
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immiscibility region and the high-pressure immiscibility region can be combined in one 

uninterrupted LL region  (Andreas Bolz 1998). 

 

Figure 2.11. Type VI P-T Phase Diagram. 

 

2.6. Phase Diagrams for Solid-Supercritical Fluid 

 Solid-SCF mixtures constitute a large and important subset of binary mixes, as 

was presented by Thomas J. Bruno and James F. Ely 1991. For these types of mixtures, 

usually the melting point of the solid is greater than the critical temperature of the SCF. 

The vapor pressure curves of both components are shown in Figure 2.12a, as well 

as the melting and sublimation curves for the pure solid. A solid-liquid-vapor (SLV) line 

that starts at the triple point (TP) of the pure solid and ends on the upper branch of the 

gas-liquid critical curve at the UCEP, indicates that the melting point of the solid is 

decreased in the presence of the supercritical fluid. This behavior can be attributed to the 

fact that the SCF dissolves the solid in the equilibrium liquid phase, lowering the melting 

point of the heavy component. 
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In Figure 2.12b, the phase diagram for a temperature in-between the SCF critical 

point and LCEP (T1) is presented. At low pressures, a solid-vapor equilibrium is 

observed, for a high solid concentration. As the pressure increases, the system comes 

across the SLV line. At high solid concentration, a solid–liquid equilibrium will be 

reached, merging continuously into a solid-fluid equilibrium with further pressure 

increments. At lower solid concentrations and pressures, a liquid–vapor equilibria 

envelope is obtained with a critical point (CP) at the top of it. 

 

Figure 2.12. Phase Diagram for a Solid-SCF System 
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As the temperature increases to T2, the liquid-vapor envelope disappears at the 

LCEP, becoming a single solid-SCF equilibrium region. As can be inferred from Figure 

2.12c, the LCEP is a crucial point when using SCF as solvents, since small pressure 

changes around it can turn the binary system Solid-SCF into a one phase system, a SCF 

system. Continuing with temperature increases to T3, shown in Figure 2.12d, the 

inflection point at LCEP vanishes.  

 

 

2.7. Phase Diagrams for Ternary Mixtures 

 The phase behavior diagrams used for ternary systems consist of a supercritical 

fluid and two other components that are liquids at room temperature, following the 

classification suggested by Elgin J. C. 1959. The ternary phase diagrams were organized 

into three different classes, based on the appearance of liquid-liquid-vapor (LLV) 

regions. The diagrams are presented as three binary pairs, where each of the three 

diagram axes represents a single tie line for a binary pair at a certain temperature and 

pressure.  

 In order to be able to study a ternary system, it is required to fix three degrees of 

freedom, such as P, T and overall mixture composition. The ternary diagrams shown set 

the SCF in the lower left-hand corner, the least soluble component (A) in the lower right-

hand corner and the third component (B) is placed at the top of the triangle phase 

diagram. 
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2.7.1. Type I 

 The three diagrams in Figure 2.13 represent mixtures at a fixed temperature, 

somewhat higher than the critical temperature of the SCF, and three different pressures. 

 

 

Figure 2.13. Phase Diagram for a Type I Ternary Mixture 

  

A particular characteristic of Type I systems is the absence of liquid-liquid-vapor 

(LLV) immiscibility regions within the ternary diagram. Figure 2.13a shows that at 

atmospheric pressure (P1), component A is miscible in all proportions with component B, 

while the SCF is almost immiscible in A and slightly soluble in component B. The solid 

curve in the diagram separates the one-phase liquid (L) region from the two-phase liquid-

vapor (L-V) region. 
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 In Figure 2.13b, the pressure of the system has been increased to a point slightly 

below the critical pressure of the SCF (P=P2<Pc). At this pressure the SCF still remains 

practically insoluble in component A but its solubility in B has increased; the tie line for 

the SCF-B mixture became smaller too, reflecting that the solubility of component B and 

SCF-rich phase has increased.  

 In Figure 2.13c the pressure is increased to a value greater than the critical 

pressure for the SCF-B mix (P=P3>Pc). The SCF is now miscible in all proportions with 

B, and the binodal curve does not intersect the SCF-B binary axis, while the SCF remains 

insoluble in A. The binodal curve intersects the SCF-A binary axis in two places, 

indicating that a liquid phase, mostly a mixture of A and B, is in equilibrium with a fluid 

phase, mainly the SCF with component B.   

 

2.7.2. Type II 

 This phase diagram is presented in Figure 2.14. What distinguishes this ternary 

mix from other systems is that liquid-liquid-vapor (LLV) regions appear within the 

pressure-composition prism but do not extend to the SCF-B face of the prism. 

Figure 2.14a shows that the phase diagram at atmospheric pressure (P=P1=Patm) 

is identical to the one described previously for the Type I mixture. 

 If the pressure is increased to P2, a pressure below the critical pressure of the SCF 

(P=P2<Pc), a miscibility break appears for various SCF-A-B compositions where liquid-

liquid (LL) and liquid-liquid-vapor (LLV) regions are generated, as shown in Figure 

2.14b. 
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 In Figure 2.14c, the pressure is increased to P3, where (P=P3=Pc), and the LL and 

LLV regions expand considerably. If the tie lines in the LL region become parallel to the 

A-B binary axis, the selectivity
BBAA x/y/x/y  approaches values greater than 1.0, 

indicating that a very good separation of A from B could be obtained at this condition. 

 

Figure 2.14. Phase Diagram for a Type II Ternary Mixture. 
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 If the pressure is further increased above the critical pressure for the SCF-B 

mixture (P= P4>Pc), the LLV miscibility gap disappears and the phase behavior becomes 

identical to that described for a Type I ternary system (Figure 2.13d), where at most two 

phases exist. 

 

 

2.7.3. Type III 

 The distinguishing feature of Type III ternary phase behavior is that the binary A-

B mixture is immiscible at very low pressures, as can be seen in Figure 2.15a. As SCF is 

added to the A-B mixture (Figure 2.15b), a very large LLV region appears in this 

diagram, then by increasing the pressure, the LL region close to the A-B axis expands. If 

the pressure value is greater than the critical pressure for the SCF-B mix (P=P3>Pc), a 

single liquid-fluid solubility curve is formed. In Figure 2.15c, the liquid-fluid solubility 

curve intersects the A-B axis at the end of the binary A-B tie line, indicating that, even at 

an elevated pressure, a miscibility region still exists in the A-B binary system.  
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Figure 2.15. Phase Diagram for a Type III Ternary Mixture. 

 

For Type III ternary systems, the liquid-liquid region increases with increasing 

SCF content (Figure 2.15b). Even if B is only slightly miscible with A at low pressures 

and in the absence of SCF, it is possible to use the SCF to separate even more A from B. 

Although the classification for ternary systems is described here at a fixed 

temperature, it is important to remember that any single binary system can exhibit all 

three types of phase behaviors as the temperature of the system changes. This implies that 

a Type I ternary system may behave as a Type II or Type III ternary system if the 

operating temperature and pressure are adjusted to values near the critical point of the 

SCF solvent. 
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2.8. Phase Diagrams for Polymers 

An important subset of high-pressure phase diagrams is the one for polymer-SCF 

mixtures. The scientific interest in the high-pressure phase behavior of polymer solutions 

was initially motivated by the technology required to make polyethylene. 

In order to facilitate the study of this system, the polymer is considered as a 

pseudo-single component, describing the phase behavior by using the same diagrams 

presented before. 

 

Figure 2.16. P-T Diagram for a Polymer-SCF System.  

 

Figure 2.16a shows the schematic P-T diagram for a Type III (small polymer 

molecules) system where the vapor-liquid equilibrium curves for two pure components 

end in their respective critical points, C1 and C2. The steep dashed line in Figure 2.16a at 

the lower temperature is the P-T trace of the UCST curve. The other critical mixture 

curve shown in Figure 2.16a starts at the critical point of the less volatile component, 



www.manaraa.com

 

 39 

shows a pressure maximum, and intersects an LLV region at conditions usually close to 

the critical point of the more volatile component. The portion of the curve named LCST 

is where the two phases (liquid-liquid) coalesce into a single phase when the temperature 

is lowered at a constant pressure. 

Figure 2.16b shows the P-T diagram for a pseudo-binary polymer-solvent mixture 

that is similar to the diagram given in Figure 2.16a. It this case the large difference in the 

molecular size of the mixture components (polymer and carbon dioxide) suppress many 

of the features of the phase diagram shown in Figure 2.16a. A pure polymer does not 

have a critical point or vapor pressure curve, so the high temperature portion of the 

critical mixture curve does not exist in Figure 2.16b. 

Both the UCST and the LCST branches of the chemical mixture curve are usually 

referred to as cloud point curves. For polymer-solvent systems, the pressure or 

temperature interval for a clear to totally opaque fluid to liquid-liquid transition along the 

UCST or LCST curves can be one hundred times greater than the interval for small 

molecule systems. The phase transition is not very distinct; it just progressively gets 

cloudier and cloudier, and so the name cloud point. 

UCST curve for a polymer-solvent system is usually attributed to enthalpy 

interactions between the mixture components, which are not affected by small pressure 

changes. However the LCST curve is usually attributed to the large difference in the 

thermal expansion or free volume of the polymer and solvent. As the mixture is heated, 

the solvent expands at a much faster rate than the polymer, so that the dissolution of the 

polymer in the solvent is associated with a large decrease in the change of entropy of 

mixing. This entropy decrease occurs as solvent molecules are forced to condense around 
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the polymer to dissolve it. At the end the amount of entropy released while forming a 

single phase is so great that the free energy of mixing becomes positive and the solution 

splits into two phases. 

Figure 2.16c shows a Type IV P-T diagram that could take place with small 

molecule mixtures if the difference in size and/or the intermolecular potentials of the 

mixture components becomes very large. The occurrence of the phase behavior shown in 

Figure 2.16c can be tracked back to Figure 2.16a. As the disparity in the properties of the 

two components increases, the temperature range between the UCST and the critical 

mixture curves shown in Figure 2.16a becomes smaller and smaller. Eventually the 

difference in properties of the mixture components becomes so large that the UCST and 

critical mixture curves merge into a single critical mixture curve, exhibiting a pressure 

minimum at low temperatures. 

Figure 2.16d shows how Figure 2.16c is transformed into a polymer-solvent 

system where the cloud point curve is the result of combining the LCST-type transitions 

at high temperatures and the UCST-type transitions at lower temperatures. 

The molecular weight distribution of the polymer also has another effect on the 

phase diagram; Figure 2.16b shows that at pressures below the LLV line, the vapor and 

the liquid phases exist in equilibrium, but if the molecular weight distribution of the 

polymer is large, the LLV line becomes an area. This is because the system is now truly a 

multi-component system and the LLV line shown in Figure 2.16b in fact represents the 

highest pressure at which three phases exist for a highly poly-disperse polymer. 
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2.9. Modeling Supercritical Fluid Equilibria 

In order to be able to design and evaluate supercritical fluid processes, it is 

essentially useful to have accurate models. Unfortunately, the properties that make SCF 

so useful such as: the high compressibility, the asymmetry of the system and the 

mathematical singularity of the critical point itself make modeling it difficult. 

There are quite a few models for supercritical phase equilibriun most of them the 

SCF phase is treated as a dense gas and an equation of state (EOS) is used to calculate the 

fugacity coefficient. 

When a supercritical solvent and a solute i are in equilibrium, the fugacity of the 

component i in the supercritical fluid phase can be determined with the following 

equation: 

       (1) 

In this approach the results are susceptible to the composition dependence of the 

interaction energies and size factors, making mixing rules extremely important. Another 

difficulty in this approach is that to estimate the fugacity coefficient in a supercritical 

phase requires the integration through the critical region where most EOSs are less 

accurate. 

Another approach considers the SCF phase as an expanded liquid, and as a result 

the fugacity is given by: 

    (2) 

where: 

i : Is the composition dependent activity coefficient at the reference pressure. 
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P
o
: Reference pressure. 

f
oL

: Is the fugacity of the pure reference liquid. 

iv : Is the partial molar volume of component i. 

 

If the reference pressure is supercritical, it is not necessary to make the integration 

on the critical region; however, an EOS should be used to calculate the partial molar 

volume and a reference activity coefficient will be required. 

When working with solids, the cubic equations cannot predict the fugacity, and 

for this reason it will be determined by modeling i as a pure component, and the fugacity 

equation obtained will be: 

    (3) 

where: 

S

if : Fugacity of a component i as a pure solid phase. 

TPsat

i
: Sublimation pressure of the pure component at the same temperature. 

S

i : Molar volume of the pure solid. 

Tsat

i
: Fugacity coefficient at T and sat

iP (correction factor for high pressure). 

: Pointing correction factor. 

 

The volume of the solid can be considered constant for a given temperature (T), 

so the pointing correction factor is simplified to: . 
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Following the same analysis the fugacity coefficient for a pure solid Tsat

i  at a 

given temperature can be considered one (1) since the saturation pressure for a solid is 

less than 1 bar. Then considering all these simplifications in equations 1 and 3, the 

solubility for a heavy solid in supercritical fluid can be determined with the following 

equation: 

       (4) 

The fugacity coefficient of the solid in the SCF phase is the most important 

variable in this equation, representing the solubility increase as the gas is compressed into 

the critical region. The fugacity coefficient describes the non-ideal behavior observed 

when the gas density increases from ideal gas values at very low pressures, where the 

molecular interaction is much lower compared to liquid-like densities at high pressures. 

At a fixed temperature, the solubility increases in the supercritical fluid solvent with 

pressure increments, as 
SCF

i  decreases much more rapidly than the pressure increases or 

than the exponential term in the numerator increases, particularly near the critical point. 

The most widely used method of analysis for supercritical equilibrium systems 

are Equations of State (EOSs). Cubic EOSs are easily extended to multi-component 

systems by using mixing rules. They can be derived by considering a first order 

perturbation with a hard sphere reference system and making some simplifications and 

assumptions. The most basic EOS known is the van der Waals (vdW), obtained by 

considering that the integral of the perturbing intermolecular potential for a pair of 

molecules is constant. The vdW EOS can predict almost all types of phase behaviors 
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qualitatively, but not necessarily quantitatively. Other EOSs like Redlich-Kwong (RK) 

(1949), the Soave modification of Redlich-Kwong (SRK) (1972) and the Peng-Robinson 

(PR) equation (1976) incorporated some improvements, like the assumption that the 

perturbing intermolecular potential is temperature and density dependent, calculating the 

parameters from critical properties and optimizing the parameters by fitting pure 

component vapor pressure or liquid molar volume data. 

Another model successfully used to describe liquid phase behavior in highly 

asymmetric polymer solutions is the Lattice-Gas EOS. The lattice-gas model is based on 

the distribution of molecules and holes, or vacant lattice sites, in a three dimensional 

lattice. Lattice models have been used to address the fact that the behavior in the 

immediate vicinity of the critical point is non-classical and cannot be described by 

classical EOS like vdW. Non-analytical lattice-gas models have been developed that are 

accurate in the critical region. Wheeler (1972) developed an equation able to describe the 

limiting behavior of dilute solutions near the critical point. Gilbert (1986, 1987) described 

a lattice-gas model able to fit molar volume and solubility data for highly asymmetric 

SCF-solid mixtures using two adjustable parameters. 

When working with polymers and SCF at high pressures, a lattice-gas model is 

recommended, as the pure component properties are calculated assuming that each 

component can be broken into small parts (mers), and these parts will each have their 

own particular hole or space (lattice), generating a specific density for system. Flory‟s 

research group developed the theory of solutions (1964-1970) known as Flory‟s theory, 

where they were able to demonstrate that the thermodynamic properties of a mixture 

depends in the thermodynamic properties of the pure components. For example, the 



www.manaraa.com

 

 45 

LCST behavior normally observed of polymers phase diagrams, is a consequence of the 

differences on the thermodynamic properties of the polymers and solvent components in 

the mixture. Flory‟s model does not apply for systems where there are strong specific 

interactions; to dilute solutions and it neglects the free volume effect. 

In 1977 Sanchez-Lacombe developed a lattice-fluid theory, in which the 

vacancies or empty lattice sites are accounted for the compressibility and density 

changes. This model does not require separation of internal and external degrees of 

freedom, as in Flory‟s theory. External degrees of freedom are attributed only to 

intermolecular forces, and internal degrees of freedom are related to intra-molecular 

chemical bond forces. 

Perturbation models such us the Statistical Associated Fluid Theory (SAFT) 

developed by Chapman et al. (1990) are more sophisticated than the lattice-fluid models. 

This theory has a wider range of applicability, since the mixture density is considered a 

function of pressure, temperature and composition. This EOS considers the association 

between resembling molecules and solvation between contrasting molecules. This makes 

the theory more accurate, but at the same time more complicated, since additional 

equations and parameters are required. 

SAFT is an EOS that incorporates terms to describe the molecular size and shape 

(including chain length and branches), association energy (like hydrogen bonds) and 

dispersion. The reference part of SAFT includes hard-sphere, chain and association 

terms, while the perturbation part of SAFT accounts for mean-field dispersion effects. 

The characteristic parameters for the pure substances involved in a mixture can be 

determined from vapor-liquid equilibrium data (VLE), vapor-pressure-temperature data 
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(VPT) or from the molecular weight. All this makes SAFT an attractive method to use, 

when using well known and characterized components. However when working with 

substances like the one required for this research, Chitosan Oligosaccharide Lactate, this 

model is difficult to use, since no molecular properties, VPT or VLE data are published. 

A technique that complements all the methods already mentioned are computer 

simulations, which are not yet effective tools for modeling SCF phase equilibria due to 

the non-analytic nature of the results and the time consuming computing calculations. 

Still, the calculations may provide a good approach on the molecular level to outline the 

basis for improved mathematical models. Monte Carlo simulation has been used to 

predict SCF equilibria with an isobaric-isothermal assembly which accounts for density 

fluctuations to calculate solid solubility in SCF. Qualitative and quantitative agreement 

were obtained using Lennar-Jones potentials, plus quadrupole interactions for the system 

naphthalene-SCCO2. 

Working with polymers in a multicomponent supercritical mixture is a complex 

problem, where most of the theoretical approaches cannot accurately predict the 

thermodynamic interaction of such a different conglomeration of molecules. The use of 

global phase diagrams provides a logical method to investigate the phase behavior of 

simple and complex mixtures. Initially this technique was applied for simple binary 

mixtures (Deiters and Pegg 1989, Lamm and Hall 2001, Patel 2008, Patel and Sunol 

2009), while lately the interest has turned to more complex systems like polar substances 

and polymer mixtures (Kraska 1996, Yelash and Kraska 1999, Polishuk et al. 2000). 

When generating a global phase equilibrium diagram from EOS, the boundaries 

between the different types of phase behavior can be obtained by calculating high order 
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thermodynamic states, which represent transition states between different types of phase 

behavior. In order to work with multicomponent mixtures, sub-systems of binaries can be 

studied separately and used as pseudo pure substances. 

As presented in this section, there are different approaches to model phase 

equilibria for SCF, and no single model will work for all situations. The compromise 

between accuracy and convenience will always exist. 
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CHAPTER 3 

SUPERCRITICAL ENCAPSULATION TECHNIQUES 

 

In this chapter, a review of published papers and patents on particle encapsulation 

using different supercritical techniques and their classification according to the different 

concepts currently used is made. Encapsulation methods using supercritical fluids 

basically follow two tracks: the homogeneous supercritical solution track or the 

heterogeneous multi-phase track. In addition, the heterogeneous track contains a sub-

classification where the carbon dioxide possibly combines with a cosolvent, or can be 

used as a solvent or antisolvent for the encapsulant material. A set of tables are presented 

in Appendices A and B contain summarized information (Papers and Patents) for the 

different SCF techniques used to encapsulate particles in the size range from 0.5 to 500 

m for different industrial applications. For this work, the term particle encapsulation 

indicates that a core solid material is covered by a shell or coating material. This term can 

be used for single core encapsulation (Encapsulated Single Particle) or multiple core 

encapsulations (Encapsulated Particles). 

At this point it is helpful to recap some information introduced in Chapter I. 

Encapsulation of fine particles to produce tailored surface properties is currently a key 

development of supercritical fluids applications, in areas like: pharmaceutical, 

nutraceutical, cosmetic, agrochemical, electronic and specialty chemistry industries. A 

direct result of the industrial application is that a considerable number of publications and 
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patents are filed every year. This chapter presents a review of published information 

classified according to the different concepts currently used to encapsulate particles, and 

is as comprehensive as possible. 

During the encapsulation process, the particle surface can be engineered with 

specific physical, chemical, and/or biochemical properties by spreading a thin film of 

material on the surface of the particles. As a result, the flow-ability, dissolution rate, 

controlled release or masking, dispersability, chemical reactivity, bio-efficacy, and 

hydrophilicity of particles can be modified for a variety of applications. 

Several traditional encapsulation processes are used at industrial levels. These can 

be classified into two broad categories with possible hybrid mechanisms: physical 

methods (vibrating nozzle, rotating disk, pan coating, fluidized bed, freeze-drying, spray 

drying, etc.) and chemical methods (coacervation, phase separation, interfacial 

polymerization, in situ polymerization, sol–gel methods, etc.). Usually these 

encapsulation methods require large amounts of organic solvents, surfactants, and other 

additives, leading to volatile organic compound (VOC) emissions and other waste 

streams. Other drawbacks include low encapsulation efficiency and further processing of 

the products such as downstream drying, milling, and sieving, which are usually 

necessary. In addition, residual toxic solvent in the end products, temperature and pH 

requirements, and strong shear forces are overwhelming challenges for maintaining the 

delicate structure of some chemical and biochemical ingredients.  

Micronization and recrystallization of pharmaceutical compounds using 

supercritical fluids has many advantages over other traditional methods like spray drying, 

jet milling, grinding, and liquid antisolvent techniques. There has been growing interest 
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in replacing conventional organic solvents with environmentally friendly supercritical 

fluids in chemical processes. Supercritical carbon dioxide (SCCO2) became an excellent 

candidate due to its characteristics and properties: it has mild critical conditions (Tc = 

304.1 K, Pc= 7.38 MPa), and is low cost, non-toxic, non-flammable, readily available, 

easily recycled, and as a solvent, it possesses a unique combination of gas-like diffusivity 

and liquid-like density and solvency (Krukonis 1985). At this point of time, SCCO2 has 

been used as solvent or processing medium demonstrating successful results in numerous 

areas, initially with supercritical extraction and separation, and more recently with 

particle formation, coating and encapsulation (Yeo 1993, Reverchon 1998). 

During the past decade, supercritical fluid processes have attracted increasing 

attention for particle engineering, including fine particle formation, coating, and 

encapsulation (Jung 2001). These have included Rapid Expansion of Supercritical 

Solutions (RESS), (Tsutsumi 1995, Wang T. J. 2001, Wang Y. 2002, Mishima K. 2000, 

Kim J. H. 1996, Tsutsumi A. 2003, Matsuyama K. 2003, Sun Y. P. 1998, Matsuyama 

2003), Gas Antisolvent (GAS), and Precipitation with a Compressed fluid Antisolvent 

(PCA) (Falk 1997, Young 1999), also known as Aerosol Solvent Extraction System 

(ASES) (Bleich 1996) or Supercritical Antisolvent method (SAS) (Wang Y. 2005, 

Elvassore 2001, Wang Y. 2004, Duarte 2006). 

Pressure or temperature changes can produce regions of supersaturation, which 

result in the formation of fine and uniform solid particles. The term supersaturation refers 

to a solution that contains more of the dissolved material than could be dissolved by the 

solvent under normal circumstances. Supersaturated solutions are prepared or result when 

the temperature increases at constant pressure, or the pressure increases at constant 

http://en.wikipedia.org/wiki/Solution
http://en.wikipedia.org/wiki/Solvent
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temperature of a saturated solution. Small particles (seeds) can trigger the separation of 

the dissolved material from the solvent. 

When using supercritical fluids to produce solid materials independent of the 

technique used, two basic mechanisms of phase separation occur: nucleation or spinodal 

decomposition. If the initial condition from which the new phase is formed is metastable, 

the phase transition occurs by nucleation. If the starting condition is unstable, the phase 

transition occurs by spinodal decomposition. 

Nucleation is an activated process where a free energy barrier must be eliminated 

in order to form a nucleus of the new phase within the metastable mother phase, while 

spinodal decomposition is a spontaneous process. The height of the nucleation free 

energy barrier is the result of the competition between the formation of an interface, 

which involves an energy cost, and the formation of a bulk stable phase, which is 

energetically favorable. The formation of a new phase by nucleation is the result of the 

activated growth of localized fluctuations of large amplitude. Nucleation normally occurs 

at nucleation sites provided by suspended particles or small bubbles; this is called 

heterogeneous nucleation. Nucleation without preferential nucleation sites is known as 

homogeneous nucleation (Debenedetti 1998).  

In contrast, spinodal decomposition involves fluctuations of any amplitude that 

grow spontaneously, exceeding the critical wavelength. Spinodal decomposition is the 

preliminary procedure by which an unstable phase settles down to equilibrium. The type 

of perturbation considered in thermodynamic stability theory is large in extent but small 

in intensity, like a small density (or any intensive property) change occurring over a 

http://en.wikipedia.org/wiki/Seed_crystal
http://en.wikipedia.org/wiki/Trigger_(particle_physics)
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large-scale volume. In the thermodynamic viewpoint, loss of stability with respect to such 

perturbations occurs at a precisely specified condition: the spinodal (Figure 3.1). 

In Figure 3.1, the binodal and spinodal curves merge at the critical concentration. 

Inside the binodal curve, the system is unstable and undergoes a spontaneous phase 

separation. Between the binodal and spinodal curves (shaded region), the system is 

metastable. Outside the binodal curve the system is fully miscible (one phase). 

 

Figure 3.1. Phase Transition by Nucleation and Spinodal Decomposition. 

 

In polymer systems the nucleation kinetics is significantly slower, leading usually 

to spinodal decomposition. The critical polymer concentration corresponds to the 

condition where , where the curvature of the free energy function is 

zero, at the spinodal point. The shape of the free energy function can be changed by 

adjusting temperature or pressure conditions. If the pressure is kept constant and the 

temperature is adjusted, two general polymer systems can be differentiated. Polymer 

systems that become miscible upon increasing the temperature are known as UCST 
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(Upper Critical Solution Temperature). Polymer systems that become miscible upon 

decreasing the temperature are known as LCST (Lower Critical Solution Temperature). 

These concepts, that are well known for polymer solutions at ambient pressures, are valid 

as well for solutions near and at supercritical conditions. At any pressure, depending on 

the nature of the combination polymer-solvent, the solution could display UCST or LCST 

or some combination of these (Kiran 1998). 

In Figure 3.2, curve a represents a complete miscible system, and curves b, c and 

d represent the variation in shape of the free energy function which occurs when 

temperature is increased or decreased. 

The route for particle synthesis and encapsulation using supercritical fluids 

basically follows two tracks: the homogeneous supercritical solution track or the 

heterogeneous track (Sunol 2001). On the heterogeneous track a sub-classification is 

suggested, where the CO2 can be a solvent or an antisolvent for the coating material. The 

schematic explanation for each of these tracks is presented in Figure 3.3. 
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a) 

 

b) 

 

Figure 3.2. Binodal and Spinodal Curves in Polymer Systems. a) LCST and b) UCST 
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The morphology of the resulting solid material depends on the material structure 

(crystalline or amorphous, composite or pure, etc.) and of the RESS parameters 

(temperature, pressure drop, distance of impact of the jet against the surface, dimensions 

of the atomization vessel, nozzle geometry, etc.) (Tsutsumi 1995, Wang T. J. 2001, Wang 

Y. 2002; Mishima K. 2000; Kim J. H. 1996; Tsutsumi A. 2003; Matsuyama K. 2003; Sun 

Y. P. 1998; Matsuyama 2003). 

Different methods have been described for the encapsulation of powders using 

RESS (Kim J. H. 1996) and its derived processes (Wang Y. 2002) obtained by coupling 

with a non-solvent (RESS-N) (Mishima K. 2000, Matsuyama K. 2003) or with a fluidized 

bed (Tsutsumi 1995, Wang T. J. 2001). All of them will be described in this review. 

a) 

 

Figure 3.3. Route for Particle Encapsulation. a) Homogeneous track. 

b) Heterogeneous track (CO2 as a solvent). c) Heterogeneous track (CO2 as antisolvent). 
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b)  

 

c) 

 

Figure 3.3. (Continued) 
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GAS (Gas Antisolvent) is also referred to as SAS (Supercritical Antisolvent). 

SEDS or Solution Enhanced Dispersion by Supercritical Fluids is a particular 

modification of this process, where the supercritical fluid is used as an anti-solvent that 

causes precipitation of the substrate(s) dissolved initially in a liquid solvent.  

This method is based on the principle that a batch of solution is expanded several 

times by mixing with a supercritical fluid in a vessel, causing the solute precipitation. 

Due to the dissolution of the supercritical fluid, the expanded solvent has a lower solvent 

strength than the pure solvent. The mixture becomes supersaturated and the solute 

precipitates (Wang Y. 2005, Elvassore 2001, Wang Y. 2004, Duarte 2006). 

An important feature of the SAS process is that the organic solvent can be almost 

completely removed by simply washing it out with pure CO2 and as a result, dry particles 

are produced. Compared to RESS, the SAS process offers much more flexibility in terms 

of choosing suitable solvents. Furthermore, SAS has advantages over RESS because SAS 

is usually operated under mild conditions compared with those of RESS, which is 

associated with relatively high temperature and high pressure (Chang 1989, Matson 1987, 

Tom 1991).  

ASES or PCA (Precipitation with a Compressed Antisolvent) is used when micro- 

or nano-particles are expected. The process consists of pulverizing a solution of the 

substrate(s) in an organic solvent into a vessel swept by a supercritical fluid, then 

spraying the solution through an atomization nozzle as fine droplets into compressed 

carbon dioxide. The dissolution of the supercritical fluid into the liquid droplets is 

accompanied by a large volume expansion, which leads to a reduction in the liquid 

solvent power. The weaker liquid solvent power causes a quick rise in the super-
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saturation within the liquid mixture and the consequent formation of small and uniform 

particles (Falk 1997, Young 1999, Bleich 1996). 

PCA enables production of relatively monodispersed, sub-micron sized particles 

of biodegradable polymers. This process is quite flexible in terms of solvent choice, as 

well as for polymer and drug also. The only stipulations on solvent choice are that the 

compressed antisolvent can readily dissolve in it and expand it. Nearly all organic 

solvents meet these criteria. 

Recent studies with PCA applied to drug processing have shown difficulties in 

incorporating the drug into the release matrix, as well as undesirable conformational 

modification of proteins. A process of dissolving ionic species in non-aqueous 

environments, Hydrophobic Ion-Pairing (HIP), was developed and successfully applied 

to these problems. 

HIP is a technique whereby ionic pharmaceutical agents and proteins can be 

directly solubilized in organic solvents. It consists of pairing charged halves of the 

molecule with oppositely charged surfactants possessing some hydrophobic character, 

effectively increasing the molecule‟s solubility in low-dielectric organic solvents by 

orders of magnitude. Anionic surfactants have been used exclusively for this work due to 

their low toxicity, while the cationic sites on the pharmaceutical compound or protein are 

masked with detergent molecules. The drug, surfactant, and residual water of hydration 

form what is referred to as a HIP complex. This technique makes it possible to obtain true 

homogeneous solutions of ionic compounds in neat organic solvents, with the only 

requirement being an accessible positive charge (Falk R. 1997). 



www.manaraa.com

 

 59 

Microencapsulation of pharmaceutical compounds in biodegradable polymer 

particles is of great interest for the development of new controlled drug-delivery systems. 

Several medical methods, depending on the required particle morphology, can be used for 

this purpose including, aerosol, inhalation, and systemic and subcutaneous injections. 

Typically, particles in to the range of 5-100 μm are subcutaneously injectable, 1-5 μm 

particles are suitable for aerosol delivery and inhalation therapy to the lungs, while 

nanoparticles can be directly injected in the systemic circulation. Even with a 

considerable number of studies of the preparation of pharmaceuticals coated with 

polymers for controlled release applications, the development of a micro-encapsulation 

method with environmentally benign solvents still remains a challenge. Solvent 

impurities are often toxic and also may degrade pharmaceuticals within a polymer matrix. 

Polymers in general have very limited solubility in SCCO2 at temperatures below 

80°C (Lele 1992 and 1994, Tom 1994, O‟Neill 1998). However, solubility can increase 

significantly at higher temperatures and very high pressures, often above 300 bar (Lele 

1994, Tom 1991, Mawson 1995). 

Another encapsulation method, well adapted for batch operation, involves 

polymerization on the particle surface in SCCO2. This method is equivalent to the 

emulsion polymerization route in aqueous media, except that SCCO2 is used as the 

polymerization solvent (Cooper 2000).  SCCO2 is a classical solvent used for 

polymerization reactions of methyl methacrylate, MMA (Wang W. 2002, Shiho 2000). 

More recently, encapsulation in SCCO2 has been found to be of particular interest for 

recovering and processing metal oxide nanoparticles (Liu 2003). Metal powders are 

common components of pyrotechnic and solid propellants. Coating of metal powders 
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reduces their deterioration through corrosion and aggregation caused by moisture or other 

aggressive surroundings. Coating of metal nanoparticles with polymers also reduces their 

flammability and makes them safe to handle. The technologies currently used in the 

industry for coating of solid substrates, such as the Wurster coating process or fluidized-

bed coating, employ common organic solvents. Replacement of organic solvents with 

SCCO2 could result in an alternative, environmentally friendly approach. 

 

3.1. Homogeneous Pathway 

Particle encapsulation using the homogeneous track is not very easy, since all the 

components (including coating material, core and cosolvent (if required)) should be 

soluble in SCCO2, and after that they have to be precipitated following an appropriate 

sequence. 

Kim Jong-Hyun (1996) used the rapid expansion of supercritical solutions (RESS) 

process to make polymeric microparticles or microspheres of poly-(L-lactic acid) (L-

PLA) loaded with pharmaceuticals (naproxen) for drug delivery applications. 

The liquid solvent carbon dioxide was compressed to the desired pressure by a 

high-pressure syringe pump. Before it entered the extraction vessel, the solvent was 

preheated up to the extraction temperature. The solvent entered the extraction vessel, 

loaded with L-PLA and naproxen mixture. Next, the saturated solution flowed to the pre-

expansion unit wrapped with double-insulated heating tape to prevent phase changes 

upon expansion and choking problems in the capillary tube caused by premature 

precipitation of solute or solid CO2. After that, the supercritical fluid solution was 

expanded through a capillary tube serving as the expansion device.  



www.manaraa.com

 

 61 

Several process variables were studied (L/D nozzle ratio, pre-expansion 

temperature, and extraction pressure) that could affect the morphology of the processed 

naproxen and L-PLA particles. Microspheres and some microspherical agglomerates 

dominated the morphology, L-PLA microspheres (10-90 μm) loaded with naproxen and 

some free naproxen microparticles (1-5 μm) were observed. 

From the results presented, the presence of agglomeration is constant in almost all 

the experiments.  This indicates that this is not a simple system, and an enhancement in 

the precipitation conditions (T-P) is required to make this step smoother. It is important 

to mention that all the precipitation methods presented in this chapter were initially used 

to make particles with a supercritical technique, and they have been adjusted for coating 

purposes, due to all the advantages that SCF offers. 

From the information reviewed and following the classification used, the SCF 

precipitation methods are heterogeneous or homogeneous.  In the heterogeneous ones 

there is a sub-classification where the CO2 can be a solvent or an antisolvent for the 

coating material. 

Homogeneous systems are less frequently used because solubility in CO2 is 

limited to low-polarity substances.  In addition to this, a homogeneous systems requires 

very fine control of the operation variables in order to be able to obtain the right 

deposition order.  However, if all the conditions are given, this could be a powerful 

method where the deposition order, the particle size and the coating thickness would be 

tunable parameters. 

In RESS processes, the nucleation phenomena is straightforward: as soon as the 

pressure decreases, the dissolved solute precipitates.  However, it is not easy to control 
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the thickness and uniformity of the coating, because this precipitation phenomena can 

happen in just 10
-5

 s. Another difficulty with a RESS process is the elimination of the 

cosolvent to trace levels, which sometimes can be a problem. However, this process is 

usually considered because the implementation costs are lower than in an antisolvent 

process and deposition will always occur. 

Antisolvent processes are recommended for systems where the coating material is 

not soluble on the SCF.  In this case an entrainer will be used, and the use of this 

technique will allow reducing the amount of cosolvent or entrainer to trace levels in the 

final product just by flushing it with pure CO2. Rapid expansion techniques show better 

results when working with particles between 10-90 m, and antisolvent methods work 

reasonably well with particles under 10 m.  

Using the data presented by authors cited in this paper, we see that the use of SCF 

in a fluidized bed improves the quality of the coating, but still when working with 

particles under 100 m, agglomeration is a common factor.  

When temperature is used as the perturbation condition to initiate the 

precipitation, a better control and uniformity of the coating is obtained.  This was 

confirmed in Sunol (1998), where an antisolvent process was described in which the 

precipitation was induced by a temperature change, allowing the formation of a coating 

film as thin as 0.2 m. Another author that used temperature adjustments in SCF to 

precipitate a coating over small particles (2-3 m) was Pessey (2000), who obtained a 

thickness of 0.2-1 m. 
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3.2. Heterogeneous Pathway 

On the heterogeneous track, the ternary system integrated by a core substance, a 

coating material, an optional co-solvent and the supercritical solvent form the 

heterogeneous mixture. The supercritical fluid can be used as a solvent for the coating 

material, and a pressure or temperature perturbation is introduced to cause the 

precipitation. Another option can be using the supercritical fluid as antisolvent, where the 

mixture becomes supersaturated, thus precipitating the coating material. 

 

3.2.1. Carbon Dioxide as a Solvent 

What characterizes this particular coating track is that the coating material is 

completely soluble in pure SCCO2, or in the system cosolvent-SCCO2. 

One of the first supercritical fluidized-bed coating processes with the rapid 

expansion of fluid solutions (RESS) was presented by Tsutsumi Atsushi (1995). 

Spherical catalyst particles (average particle size of 56 μm) were coated with paraffin by 

expanding a supercritical carbon dioxide solution of paraffin through a nozzle into a bed 

that was fluidized by air. Tsutsumi reported no significant agglomeration during coating 

and, using a gravimetric method, estimated the thickness of paraffin layer coated on the 

core particles to be below 0.5 m. 

A new method for coating polymeric thin films on particles was achieved via 

simultaneous nucleation of polymeric material, by encapsulating the fluidized particles in 

the supercritical fluid, and further curing and binding the material coated on the particles, 

Sunol et al. (1998). A schematic description of the multi-purpose pilot plant used is 

shown in Figure 3.4. 
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Figure 3.4. The Supercritical Fluid Aided Materials Processing Pilot Plant. (Sunol 1998) 

 

The prototype system used carbon dioxide as the supercritical solvent and 

hydroxyl terminated poly butadiene (HTPB) as the polymer. The particles coated were 

sodium chloride crystals and ammonium nitrate, with a particle size range of 30-500 m 

and film thickness as low as 0.2 m.  

The particles were fluidized with supercritical fluid recirculated through a 

recirculation pump in a closed loop. The loop was maintained at a low but supercritical 

temperature, while the fluidized bed was controlled at a higher temperature, in order to 

decrease the solubility, precipitating the coating material and promoting the 

polymerization. In order to achieve successful fluidization, the liquid feed containing 

monomer/polymer, catalyst, and the curative were introduced into the recirculation loop, 

which operated at a temperature that maximized solubility. The operation continued in 
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the recycle mode until satisfactory level of coating and curing was achieved. Then, the 

system was shut down through a procedure that avoided further polymerization and 

precipitation of the polymer. 

The surface characteristics of the polymer encapsulant were quite uniform. SEM 

and AFM both confirmed the deposition of a defect free, self-planarizing, encapsulating 

layer on the selected particulate materials. 

This particular coating method can be distinguished from regular coating 

processes, since the precipitation is a consequence of a temperature increment instead of 

depressurization; this suggests a better control on the coating, given that the precipitation 

process is slower, providing more time for thermodynamic stabilization of the system.  

In 2000, Pessey et al. presented particular “core-shell structures,” Ni/Cu and 

SmCo5/Cu, by thermal decomposition of bis(hexafluoroacetylacetonate)-copper(II) in the 

supercritical mixture CO2/ethanol. Ni particles with an average diameter 3 m and 

thickness of 0.2 to 1 m were obtained. 

The experimental system required a high-pressure reactor made of stainless steel 

and the internal walls covered with poly(tetrafluoroethylene) film (PTFE; thickness 0.25 

mm) to avoid contamination of the cell‟s wall. An external heating resistor allowed the 

precursor to reach the decomposition temperature. The temperature of the cell‟s bottom 

was TA, while the temperature of the cell‟s top was maintained constant at TB (with TB > 

TA), creating a convective movement produced by the temperature gradient (TB - TA).  At 

the same time, the precursor decomposition occurred and released atomic copper, which 

coated the in-movement particles. The experimental set-up is shown in Figure 3.5.  
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Figure 3.5. Apparatus for Particle Encapsulation by Thermal Decomposition. 

 

A strong point of this process is that after the decomposition stage the organic part 

of the precursor is still soluble in the supercritical fluid and is easily removed when the 

vessel is vented and easily trapped at the outlet of the installation. After the return to 

ambient conditions, the coated particles are directly obtained free of solvent and organic 

contamination. 

Mishima et al. (2000, 2001 and 2003) presented a rapid expansion method they 

named RESS-N, since they used a cosolvent (methanol, ethanol, propanol) that as pure 

component was a non-solvent for the coating material (poly ethylene glycol (PEG), 

poly(methyl methacrylate) (PMMA), poly(L-lactic acid) (PLA), poly(DL-lactide-co-

glycolide) (PGLA) and PEG-poly(propylene glycol) (PPG-PEG) triblock copolymer). 

The solubilities of these polymers in CO2 increased significantly with low-molecular 

weight alcohols as cosolvents. Particles of lysozyme (24 m), lipase (19 m), p 

acetamidophenol, acetylsalicylic acid, 1,3-dimethylxanthine, flavone, and 3-
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hydroxyflavone (15 m) and TiO2 (35 and 320 nm) were coated following the procedure 

presented in Figure 3.6. 

 

Figure 3.6. Formation of Polymeric Microcapsules by RESS-N. 

 

With this work, the authors made a great contribution in the coating arena, since 

particles between 6 and 62 m were coated with different polymers and the SEM results 

showed they got good coverage.  The most important contribution was the development 

of a technique where the cosolvent could be easily removed from the final product, as 

evidenced by the amount of residual cosolvent in the microcapsules, which was less than 

1 wt. %. 
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Glebov (2001) used SCCO2 to apply polymeric films on fused silica plates and 

metal (Al, Mg) powders (20 μm).  The polymers used were poly (vinylidene fluoride) and 

poly (4-vinylbiphenyl) (PVB).   

Solutions of polymers in SCCO2 were prepared in a batch stirred high-pressure 

temperature-controlled reactor, and samples of metal powders and/or of fused silica 

substrates were placed in an auxiliary vessel (sampling volume) connected to the reactor 

through a sampling valve. After the desirable reactor temperature was achieved, the 

sampling valve was opened and the auxiliary volume was connected to the reactor.  After 

10 min the sampling valve was closed, and the reactor was discharged to the atmosphere. 

The sampling volume was allowed to cool and then discharged. The thicknesses of the 

films reported were in the range of 1-30 nm. 

In 2001, Wang Ting-Jie used a rapid expansion of supercritical fluid solution 

(RESS) process for the coating granulation of fine particles in a fluidized bed. He used 

CO2 as a solvent, paraffin as a binder, fine particles of SiO2 (d= 1μm) as coating material 

and glass beads as core particle (d=130 μm). What makes this process different is that 

core particles and fine particles were employed to simulate the drug-carrier and the drug 

in pharmaceuticals. The core particles carried the drug of fine particles to the human 

body and dispersed them. The releasing control of the fine particles was determined by 

the surface coating on the fine particles. The core particles and fine particles were mixed 

and fluidized before the rapid expansion of the supercritical fluid solution. 

Like in other RESS processes, the paraffin was heated and extracted with SCCO2. 

After extraction, the SCCO2 solution of paraffin was expanded into the fluidized bed 

through the nozzle. Liquefied carbon dioxide was fed into the extraction column at a 
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constant flow rate to keep the pressure constant in the column during the coating 

granulation process. The temperature at the nozzle inlet was found to be an important 

factor affecting the coating granulation process. 

The rapid expansion of the supercritical solution caused a high supersaturating 

ratio of solute in the spraying flow, forming a large number of superfine nuclei. The 

superfine nuclei deposited on the surface of the particles formed a thin film. It was found 

that the fine particles were all covered with the thin film. The granules with fine particles 

attached were circulated through the spraying region and were covered with the binder or 

coating material in the region in the form of a film, resulting in the fine particles being 

cumulatively coated on core particles layer by layer.  

Ribeiro Dos Santos (2002 and 2003) implemented a batch process to create 

solvent-free microparticles of bovine serum albumin (BSA) for sustained release using 

Gelucire 50/02 (which is a mixture of glycerides and fatty acid esters), Dynasan 114 or 

Trimyristin as coating materials. 

The coating material and the BSA crystals were placed in an autoclave equipped 

with an impeller. The autoclave was sealed, heated and pressurized with CO2 until the 

desired supercritical conditions were reached. Cooling the autoclave induced a pressure 

decrease and a phase change from supercritical to liquid state, thereby insolubilizing the 

coating material precipitated upon the insoluble BSA crystals dispersed in the medium. 

Afterwards, the autoclave was vented to ambient conditions and the coated particles were 

collected from the bottom of the autoclave. 

The stability of BSA was evaluated by performing capillary electrophoresis and 

there was no apparent effect of the encapsulation conditions on the structural integrity of 
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the protein. Gelucire 50/02 appeared to be a good coating material, since it did not 

crystallize such as Dynasan 114 and Trimyristin did. The coating was not found to be 

perfectly uniform: the outer surface of the coated particles exhibits some discontinuities 

and defects, with an average of two BSA crystals contained in each particle and a mean 

coated particle size of 500 m. 

One of the advantages of this process, compared to the homogeneous SCF 

process, is that the active material to be coated stays in its solid state during the whole 

process; consequently, biomolecules such as proteins used as drugs are less prone to 

denaturalization in process like this. 

A modified RESS process for particle coating with a solution of polymer in 

supercritical CO2 was studied by Wang Yulu (2002). This technique involved extracting 

the polymer (polyvinyl chloride-co-vinyl acetate (PVCVA) and hydroxypropyl cellulose 

(HPC)) with supercritical CO2, with or without a co-solvent in an extraction vessel. Next, 

the polymer was precipitated onto the surface of host particles (glass beads, 315 and 500 

m) in a second precipitation vessel by slowly adjusting the pressure and temperature 

inside the precipitator to lower its solubility. The author reported an average coating 

thickness of 0.8 μm, with some agglomeration and uneven coating. 

A rapid expansion of supercritical suspensions in impinging-stream reactors was 

presented by Tsutsumi (2003) for the coating of ultra fine particles with the coating layer 

(paraffin) in nanoscale. Silica particles with an average diameter of 1μm and titanium 

dioxide with the average diameter of 20 nm were used as core particles.  

Measured amounts of ultra fine core particles and paraffin were loaded in the 

extraction column, then CO2 was injected, and P and T were adjusted to get a SC 
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mixture. After mixing, the supercritical suspensions were allowed to expand into the 

coating chamber through two capillary nozzles. The nozzles were heated to prevent 

clogging. During the expansion process, supercritical carbon dioxide was fed into the 

supercritical extraction column continuously to keep the pressure constant. 

The impinging distance was observed to influence the coating rate of the ultra fine 

particles. The coating layer on the core particles was detected by the SEM observation. 

Thickness of the paraffin layer was around 50–60 nm. It was found that uniform film 

coating was successfully achieved in the single core silica particle and agglomeration was 

observed for titanium dioxide.   

Another way to encapsulate particles is by dispersion polymerization in SCCO2 , 

as Yuea (2004) proposed. Dechlorane PlusR 515 (DCR) particles, with an average size of 

12 μm were chosen as model host particles and were successfully encapsulated with 

poly(methyl methacrylate) (PMMA) and poly(1-vinyl-2-pyrrolidone) (PVP) polymers via 

in situ dispersion polymerization in supercritical carbon dioxide (Figure 3.7). 

During polymerization, AIBN acted as free-radical initiator and PDMS-MA 

functioned as a surfactant. All components were premixed and charged into the reactor 

with CO2 at room temperature until an appropriate pressure was reached. 

 

 

Figure 3.7. Radical Polymerization Mechanism. 
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Before the reaction started, the monomer, surfactant, and initiator were all 

dissolved in CO2 and the heavy DCR particles stayed at the bottom of the vessel during 

the reaction. The vessel was then heated to initiate the free radical polymerization and the 

pressure reached its desired final value. Most of the experiments were run for 48 h 

(reaction time), after which CO2 was released and the reactor was cooled down to room 

temperature followed by sample collection. 

Results showed that the average particle size of 12 m and the particle 

agglomeration observed was minor. As the authors stated, the polymer coagulation and 

the coating thickness could be controlled adjusting the Monomer/Core Material ratio and 

by adequate T-P operation conditions. 

Kröber H. (2005) made a great contribution by using a fluidized-bed coating 

process with a rapid expansion of supercritical solutions (RESS) on the encapsulation of 

different diameters of glass beads (7.39 – 124.6 μm). He showed that it was possible to 

fluidize particles with a mean diameter of 7.4 m, and he proved that the fluidization of 

particles under sub- or supercritical conditions was different from that under atmospheric 

pressure. With increasing pressure, the minimum fluid velocity necessary to start the 

fluidization decreased as the density of the SCF increased. 

Supercritical carbon dioxide was used as solvent as well as carrier fluid for the 

core material creating the fluidized-bed.  The coating material was stearyl alcohol 

(C18H38O). The apparatus consisted essentially of three subsections: the CO2 supply, the 

extractor (in which the CO2 becomes saturated with coating) and the high pressure 

reactor (where the coating takes place). The fluidized-bed reactor was filled with the core 
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material and the bed was fluidized by adding pure carbon dioxide as “carrier fluid.”  The 

reactor floor consisted of a perforated plate.  

When the reactor reached thermal stability, the micro-encapsulation process was 

initiated. Carbon dioxide flowed through the extractor, saturated by the coating material, 

and then expanded through a nozzle into the fluidized-bed reactor.  The expansion 

produced a fine aerosol of droplets that deposited onto the core particles, spreading out as 

a film and then hardening, yielding a solid layer of coating on the particles. Complete 

coatings with a layer thickness between 1 and 8 m were achieved.  

Another work in encapsulation based on an in situ polymerization for coating 

ceramic particles was presented by Hertz (2006). The YSZ powder (particle size 30 to 

300 nm), the MMA monomer, the surfactant (PDMS-g-PA or FOMBLIN) and the 

initiator were introduced in the reactor containing pentane. The reactor was closed and 

the mixture stirred. CO2 is non-polar whereas the oxide surface is polar; therefore, the 

surfactant molecules tended to assemble spontaneously at the surface of the particles with 

the polar or CO2-phobe part anchored on the particles and the non-polar or CO2-phile part 

dissolved in SCCO2 under specific conditions (Calvo 2000, DeSimone 2001, Johnston 

2000). Polymerization was carried out in SCCO2 during 4 h at 30MPa and 150 °C. 

(Figure 3.8). 
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Figure 3.8. Schematic Description of the Proposed Mechanism for the Encapsulation of 

YSZ Powder by in Situ Polymerization in SCCO2. 

 

A number of attractive results were obtained from this preliminary study. The 

calculated thicknesses for the polymer shell were about 4.3 nm. 

 

3.2.2. Carbon Dioxide as an Antisolvent 

What characterizes this particular coating track is that the coating material is not 

soluble or has a low solubility in pure SCCO2. 

The aerosol solvent extraction system (ASES) used by Bleich (1996) exploited 

the fact that a supercritical gas was acting as non-solvent for an organic solution of the 

drug (hyoscine butylbromide, indomethacin, piroxican and thymopentin) and polymer 

(PLA) in order to form microparticles by a flocculation process. Due to the miscibility of 

the organic solvent used, methylene chloride, and the supercritical gas phase, 

microparticles with residual organic solvents below 30 ppm were formed.  

The drug polymer solution (2%, w/w) was sprayed through a nozzle into the 

supercritical carbon dioxide phase. The spraying of the drug/polymer solution was 

followed by a drying process where CO2 was pumped continuously. The microparticle 

size for all products was smaller than 50 m. Therefore, drugs with low solubility in 

supercritical carbon dioxide were preferable for this microparticle production technique. 
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Hydrophobic ion pairing (HIP) is a technique whereby ionic pharmaceutical 

agents and proteins can be directly solubilized in organic solvents while maintaining 

biological activity. It consists of pairing a charge on the molecule with oppositely 

charged surfactants possessing some hydrophobic character, effectively increasing the 

molecule‟s solubility in low dielectric organic solvents. Falk (1997) used this technique 

to coat low molecular weight pharmaceuticals like gentamycin, naloxone, and naltrexone, 

using supercritical carbon dioxide as the antisolvent, methylene chloride as a cosolvent 

and PLA as the polymer coating, in a compressed antisolvent (PCA) process. 

In this process, carbon dioxide, the solvent containing the pharmaceutical 

compound and the polymer were pumped concurrently through an ultrasonic spray nozzle 

into a view cell containing carbon dioxide, at constant pressure and temperature. The cell 

was vented from the top so the precipitated particles could settle and be recovered 

directly from the chamber. The drug/polymer particles were spherical in shape and 

between 0.2 and 1.0 m in diameter, as determined by scanning electron microscopy. 

Drug incorporation efficiencies were determined and in vitro release profiles measured. 

Young (1999) produced encapsulated Lysozyme (1-10 μm) by PCA method with 

some particular modifications that allowed him to avoid earlier limitations of massive 

polymer agglomeration and limited protein solubility in organic solvents. 

The protein was encapsulated in biodegradable polymer, either poly-(l-lactide) (l-

PLA) or poly(DL-lactide-co-glycolide) (PGLA) microspheres, which were precipitated 

from a dichloromethane solution after being sprayed into a CO2 vapor phase through a 

capillary nozzle to form droplets which solidified after falling into a CO2 liquid phase. By 

delaying precipitation in the vapor phase, the primary particles became sufficiently large, 



www.manaraa.com

 

 76 

from 5 to 70 μm, such that they could encapsulate the lysozyme. At an optimal 

temperature of -20 °C, the polymer solution mixed rapidly with CO2, and the precipitated 

primary particles were hard enough that agglomeration was markedly reduced compared 

with higher temperatures. 

Upon completion of solution injection, the cell was filled with liquid CO2. Liquid 

CO2 was swept through the cell to remove the dichloromethane and further dry the 

particles. After drying, the cell was depressurized. 

Elvassore (2001) achieved the microencapsulation of insulin with PLA using a 

mixture of cosolvents, dichloromethane and dimethyl sulfoxide, in order to ensure the 

solubility of both the polymer and the protein, to which the supercritical antisolvent was 

added.  

In the SAS method, the liquid solution and the supercritical antisolvent were 

continuously added to the precipitation unit in concurrent or countercurrent mode and the 

particles formed were collected in the vessel. In the final step, supercritical CO2 flowed 

into the vessel to wash and dry the precipitated products and after the cosolvents were 

extracted, the CO2 was vented through an expansion valve.  

It was found that the use of mixed solvents gave a suitable solution for the 

application of the SAS process. Submicron particles with no flocculation and 

agglomeration phenomena were obtained. The results showed that microspheres of PLA 

charged with insulin that were produced had average diameters ranging from 0.5 to 2 μm. 

In the majority of the encapsulation procedures the common problem is 

agglomeration.  In order to solve this problem, Wang (2004) used an ultrasonicator to 

break the nanoparticles agglomeration. Silica nanoparticles (hydrophobic and 
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hydrophilic) were employed as host particles, Eudragit polymer as the coating material, 

acetone as cosolvent and supercritical CO2 as the anti-solvent (SAS). 

Eudragit was dissolved in acetone and the silica nanoparticles were suspended in 

the polymer solution, and an ultra-sonicator was used to break up the nanoparticles 

agglomerated in the silica–acetone suspension. When steady state conditions were 

reached in the high-pressure vessel, the polymer-silica–acetone suspension was delivered 

by a high-pressure pump and was sprayed through a stainless steel capillary nozzle into 

the high-pressure vessel containing SCCO2. Thereafter, CO2 was supplied to remove any 

residual organic solvent. When the cleaning step was completed, the high-pressure vessel 

was slowly depressurized and samples were collected for characterization. 

The results revealed that 16–20 nm nanoparticles were successfully coated or 

encapsulated in polymer by the SAS coating process.  The thickness of the polymer film 

was estimated to be around 10–40 nm, and appeared to be independent of surface 

hydrophilicity. 

One year later Wang attempted to encapsulate fine submicron silica particles (0.5 

μm) with a polymer for controlled release of drugs, poly(lactide-co-glycolide) (PLGA), 

using the same supercritical antisolvent (SAS) technique reported in Wang 2004. 

The results showed that submicron silica particles were successfully encapsulated 

by PLGA in the form of loose agglomerates. It was found that the polymer weight 

fraction and the polymer concentration played critical roles in the agglomeration of the 

coated particles. A high polymer weight fraction favored the agglomeration of the coated 

particles and the uneven distribution of the polymer coating. A low polymer 

concentration appeared to prevent agglomeration among the coated particles. The 
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operating pressure and temperature were also found to influence agglomeration. A higher 

pressure facilitated the agglomeration of coated particles as a result of sintering because 

the glass-transition temperature of the polymer, Tg, was depressed. The operating 

temperature appeared to have little effect on the agglomeration of the coated particles 

when the temperature was below the glass-transition temperature; however, when the 

operating temperature was above Tg, the polymer coating on the surface of particle 

appeared to be sintered, causing strong agglomeration. The flow rate of the polymer 

suspension was found to have little effect on the agglomeration. 
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CHAPTER 4 

ENCAPSULATED PROTOTYPE SYSTEMS 

 

Controlled release systems provide the benefits of protection from rapid 

degradation, targeted delivery, control of the release rate, and prolonged duration of 

bioactive agents. Controlled drug delivery systems have received considerable attention 

in recent years and they are providing in general a more controlled rate of uptake of the 

drug by the body. In this way, their therapeutic action is prolonged without increasing the 

dosage. One common way of controlling the release is by incorporating the drug in a 

polymeric carrier, and then the drug is released in the affected site by diffusion or surface 

erosion. 

In conventional pharmaceutical applications, the active compound is rapidly and 

totally released in the body in a single burst. The concentration of the drug inside the 

body decreases with time (Figure 4.1a). At the beginning a peak is observed, and then as 

a function of time the concentration decays. One of the main problems in the traditional 

system is the possibility that the concentration–time curve crosses the toxicity limit for 

the active component. Every active substance presents two concentration limits: a lower 

limit, that represents the minimum concentration to obtain therapeutic effects, and the 

upper or toxicity limit, that represents the maximum concentration for which the 

undesirable effects are more important than therapeutic drug action.  
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The purpose of controlling the drug delivery is to achieve more effective therapies 

while eliminating the potential for both under and over dosing. Other advantages of using 

controlled delivery systems can include the maintenance of drug levels within a desired 

range, the need for fewer administrations, optimal use of the drug, and patient compliance 

(Figure 4.1b). 

While these advantages can be significant, the potential disadvantages cannot be 

ignored.  The possible toxicity or biocompatibility of the polymer coatings used, 

undesirable by-products of degradation, the chance of patient discomfort, and the higher 

cost of controlled release systems compared with traditional pharmaceutical formulations. 

For these reasons, research with biodegradable polymers has expanded considerably. 

These materials degrade within the body as a result of natural biological processes. Most 

biodegradable polymers degrade as a result of the hydrolysis of the polymer chains into 

biologically acceptable, and progressively smaller, compounds. In some cases (e.g. 

polylactides, polyglicolides and their copolymers) the polymers will eventually break 

down to lactic acid and glycolic acid, enter the Kreb‟s cycle, further break down into 

carbon dioxide and water, and finally, are excreted through normal processes. 
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Figure 4.1. Drug Levels in the Blood.  

(a) Traditional drug dosing, (b) Controlled delivery dosing. 

 

 

The objective of this research was to develop a tunable and mild encapsulation 

technique capable of coating dried powder particles with a final size between 1 to 5 m, 

since there are still a lot of room for improvement in this particle size range, as was 

shown in Chapter 3. 

The particle should contain one core or active ingredient and a protective coating. 

Since the encapsulation method is in development, the simplest model was suggested 

(Figure 4.2).  
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In this chapter, the chemicals used in the encapsulation process will be described, 

including the rationale for their selection, their pertinent physical and chemical properties 

and their molecular structures.  

 

Figure 4.2. Coated Dry Powder Prototype. 

 

 

4.1. Chitosan 

Chitosan is a modified carbohydrate polymer derived from chitin deacetylation, as 

can be seen in Figure 4.3.   

  

Figure 4.3. Preparation of Chitosan from Chitin. 

 

Chitosan is used for nasal, ocular and oral drug delivery. Its use prolongs contact 

time and improves drug absorption. Furthermore, Chitosan is useful for gene delivery, 

due to its permanent cationic charge.  It interacts electrostatically with negatively charged 
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molecules like DNA to form complexes which are very stable and therefore it is able to 

condense DNA molecules, protecting the DNA against nuclease degradation. 

In acidic mediums, the amine groups will be positively charged, conferring to the 

polysaccharide a high charge density which results in a strong electrostatic interaction 

with mucus and negatively charged mucosal surfaces, thereby increasing the permeability 

of an epithelium (Mansouri, 2004). 

In addition to the properties mentioned in Table 4.1, Chitosan has the ability to 

cause tight junction disruption at the molecular level, enhancing drug delivery through 

tissues (Smith et al. 2004).  

Table 4.1. Chitosan Properties. 

Chemical properties Biological properties 

Cationic polyamine Natural polymer biocompatible 

High charge density at pH<6.5 Biodegradable to normal body constituents 

Adheres to negatively charged surfaces Safe and non-toxic 

Amiable to chemical modifications Hemostatic, bacteriostatic and fungistatic 

High molecular weight linear polyelectrolyte. Anticancenogenic 

Viscosity, high to low (depending on Mn) Versatile 

Reactive amino/hydroxyl groups Reasonable cost 

 

Chitosan is a weak base and is insoluble in water at neutral and alkaline pH. 

Cancer or tumor cells have an acidic pH, making the amine groups in the Chitosan to be 

positively charged.  As mentioned above, this confers to the polysaccharide a high charge 

density which results in a strong electrostatic interaction, which increases the 

permeability of the cell. 
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The versatility and tune-ability of this polymer is given by the combination of 

degree of deacetylation and molecular weight (Table 4.2), which promotes solubility in 

different environments (Köping-Höggård, 2003). 

Table 4.2. Chitosan Classification (Sigma Aldrich) 

Polymer Average Mn % Deacetylation Viscosity (cps) 

Oligosaccharide < 5000 > 90 6 

Low Mw 50,000-190,000 75-85 20-200 

Medium Mw 190,000-310,000 75-85 200-800 

High Mw 310,000-375,000 >75 800-2000 

 

The specific polymer used in this research was Chitosan Oligosaccharide Lactate, 

(with a number average molecular weight Mn<5000, Sigma Aldrich 523682), as it is 

soluble at regular mucus pH 6.5, water and DMSO, which confirms a promising future 

application in pharmaceutical and food fields. Table 4.3 contains some physical 

properties of this polymer. 

Table 4.3. Chitosan Oligosaccharide Lactate Physical Properties. 

Property Value Source of Information 

Physical form 
Yellow powder 

> 90% deacetylation 
Sigma Aldrich 

Average MW < 5000 Sigma Aldrich 

MW 

(amu) 
340.3 Sigma Aldrich 

Density 

(g/cc) 

1.4532 (22.6 C) 

1.4657 (28.6 C) 

1.4763 (35.3 C) 
 

Quantachrome 

Ulatrapicnometer 1000 

Viscosity 

(cP) 
6 

In 1 % acetic acid, Sigma 

Aldrich 

Soluble in 
H2O, DMSO, Acetic acid 

solutions (6-6.5 pH) 

Determined experimentally 

(Chapter 5) 
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4.2. Carbon Dioxide (CO2) 

Carbon dioxide is a colorless, odorless gas. At standard temperature and pressure, 

the density of carbon dioxide is about 1.5 times that of air. The carbon dioxide molecule 

(O=C=O) contains two double bonds and has a linear shape. It has no electrical dipole, 

and as it is fully oxidized, it is moderately reactive and is non-flammable.  

Supercritical carbon dioxide refers to carbon dioxide that is in a fluid state while 

also being at or above both its critical temperature and pressure, allowing for rather 

unique properties. Carbon dioxide usually behaves as a gas in air at standard conditions 

for temperature and pressure (STP) or as a solid called dry ice when frozen.  

If the temperature and pressure are both increased from STP to be at or above the 

critical point for carbon dioxide, its properties are midway between a gas and a liquid. 

More specifically, it behaves as a supercritical fluid above its critical temperature 

(31.1°C) and critical pressure (72.8 atm), expanding to fill its container like a gas but 

with a density like that of a liquid (Figure 4.4). 

 

Figure 4.4. Supercritical Fluid Phase Diagram. 
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Supercritical CO2 has become an important commercial and industrial solvent due 

to its role in chemical extraction, in addition to its low toxicity and environmental impact. 

It is a non-flammable solvent with low viscosity, high diffusion rate and no surface 

tension. The relatively low temperature of the process and the stability of CO2 also allow 

most compounds to be extracted or dissolved with little damage or denaturing. The 

selective solvating power of carbon dioxide makes it possible to separate a particular 

component from a multi component mixture. Another big advantage for food and 

pharmaceutical applications is that CO2 inactivates a wide variety of bacterial organisms, 

enabling the final product to be sterilized. 

A drawback of CO2 as a solvent, however, is that only volatile or relatively non 

polar compounds are soluble, as CO2 is non-polar, and has low polarizability and a low 

dielectric constant. For this reason, a cosolvent is usually employed in the cases where 

the solute of interest is not soluble or has a very low solubility in pure supercritical 

carbon dioxide. Some of the properties of carbon dioxide are presented in Table 4.4. 
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Table 4.4. Properties of Carbon Dioxide (CO2). 

Properties 

Molecular weight  44.0095(14) g/mol 

Appearance colorless gas 

Density 1,600 kg/m³, solid; 1.98 kg/m³, gas 

Melting point  −78 °C (194.7 K) (sublimes) 

Boiling point -57 °C (216.6 K) at 5.185 bar 

Critical temperature, Tc  31.03°C 

Critical pressure, Pc 7.38MPa 

Dynamic viscosity,  (1-9) x10
-4

 g/cm -s 

Surface tension,  4.34 dyn/cm at 20°C 

Solubility in water 1.45 kg/m³ 

Acidity (pKa) 6.35 and 10.33 

Kinematic viscosity,   0.113x10
-6

 m
2
/s at -10 °C 

Dipole moment  zero 

Heat capacity, cp  183.1 J/mol K at 38°C, 8653 kPa 

Enthalpy of vaporization ( H vap) 15.326kJ/mol at -57.5°C 

Enthropy of vaporization ( S vap) 70.8 J/mol K at -57.5°C 

 

4.3. Dimethyl Sulfoxide (DMSO) 

Dimethyl sulfoxide, whose chemical formula is (CH3)2SO, is a by-product of 

wood pulping. This colorless liquid is an important polar aprotic solvent that dissolves 

both polar and non-polar compounds and is miscible in a wide range of organic solvents 

as well as water. It has a distinctive property of penetrating the skin readily, allowing the 

handler to taste it. Its taste has been described as oyster- or garlic-like. Some of the 

properties of the dimethyl sulfoxide are presented in Table 4.5. 
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Table 4.5. Properties of DMSO  

Properties 

Molecular formula C2H6OS 

Molar mass 78.13 g/mol 

Appearance Clear, colorless liquid 

Density,  1.1004 g/cm
3
, liquid 

Melting point 18.5 °C (291.65 K) 

Boiling point 189 °C (462.15 K) 

Solubility in water Miscible 

Critical temperature, Tc  447°C 

Critical pressure, Pc 57.1atm 

Viscosity,  1.996 cP at 20 °C 

Dipole moment  3.96 

Heat capacity, cp 153 J/mol K 

Entropy, S 188.78 J/mol K 

Enthalpy of formation, Hf -203.4 kJ/mol 

 

DMSO is an important polar aprotic solvent, since it is able to dissolve a variety 

of organic substances, including carbohydrates, polymers, peptides, as well as many 

inorganic salts and gases, and is less toxic than other members of this family. Loading 

levels of 50-60 wt % are often observed vs 10-20 wt % with typical solvents.  

Use of DMSO in medicine dates from around 1963 (Parcell 2002), when a 

University of Oregon Medical School team, headed by Stanley Jacob, discovered it could 

penetrate the skin and other membranes without damaging them and could carry other 

compounds into a biological system.  In addition, because DMSO increases the rate of 

absorption of some compounds through organic tissues including skin, it can be used as a 

drug delivery system. 
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DMSO was selected for this research as an entrainer since the polymer (Chitosan) 

is highly soluble in it but not in pure carbon dioxide. Second, the fact that the liquid is 

transferred into the CO2 under some specific P, T conditions and the non-solubility of the 

Chitosan in the mixture (CO2 + DMSO) at that conditions were considered in order to 

design this new encapsulation method. 

 

4.4. Calcium Oxide (CaO) 

Calcium oxide is a white, caustic and alkaline crystalline solid commonly known 

as burnt lime, lime or quicklime; it is a widely used chemical compound, as a softener 

and pH regulator for water treatment, fertilizer, food industry,  petroleum additives, glass, 

fiberglass and steel industry. On the food and pharmaceutical industry this chemical is 

used on the manufacture of antacid, dairy basic drinks, food complement, cheese, 

condensed milk, powder milk, cereals, pasta, protein products, and animal nutrition 

products, etc. 

In this present work calcium oxide was used as it is readily available in a wide 

particle size range (less than one micron to 250 microns), low cost, non soluble in DMSO 

or SCCO2, non porous and well characterized. There is also value in micro-encapsulated 

calcium oxide products. Some of the properties of the calcium oxide are presented in 

Table 4.6. 
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Table 4.6. Properties of Calcium Oxide (CaO). 

Properties 

Molecular formula CaO 

Molar mass 56.077g/mol 

Appearance White solid 

Density 3350 kg/m
3
, solid 

Melting point 2572 C (2845.15 K) 

Boiling point 2850 C (3123.15 K) 

Thermal conductivity k, (cal/cm  s K) 0.019 

Porosity ssa, (m
2
/gr) 2-5 

Solubility in water reacts 

Enthalpy of formation, Hf  -635.09 kJ/mol 

Entropy, S 38.19 J/mol K 

Heat capacity, cp 49.954 kJ/ mol K 

 

 

4.5. Titanium Dioxide (TiO2) 

In terms of volume, Titanium Dioxide is one of the top fifty chemicals produced 

worldwide. It is a white, opaque and naturally-occurring mineral found in two main 

forms: rutile and anatase. Titanium dioxide has a variety of uses, as it is odorless and 

absorbent. From medicine to make-up and plastics to paper, hardly a day goes by when 

we do not use titanium dioxide. In powder form, titanium dioxide (TiO2) is widely used 

as an intensely white pigment to brighten everyday products such as paint, paper, plastics, 

food, medicines, ceramics, cosmetics, and even toothpaste. Its excellent UV ray 

absorption qualities make it perfect for sunscreen lotions, too. It is also inert and 

biocompatible, making it suitable for medical devices and artificial implants. Titanium 
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dioxide is what allows osteo-integration between an artificial medical implant and bone. 

Some of the properties of the titanium dioxide are presented in Table 4.7. 

Table 4.7. Properties of Titanium Dioxide (TiO2). 

Properties 

Molecular formula TiO2 

Molar mass 79.87 g/mol 

Appearance White solid 

Density 4230 kg/m
3
, solid 

Melting point 1870 C (2143 K) 

Boiling point 2972 C (3245 K) 

Porosity ssa, (m
2
/gr) 10-200 

Solubility in water insoluble 

 

Like calcium oxide, titanium dioxide is widely available and well characterized. It 

is low cost, insoluble in DMSO or SCCO2, and the particle size used is less than one 

micron and is porous. Experiments with TiO2 allowed evaluating the effect of porosity on 

the encapsulation process. 
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CHAPTER 5 

EXPERIMENTAL SYSTEMS AND PROCEDURES 

 

In this chapter a description of all the experimental set-ups used during this 

research will be presented.  This section includes set-up diagrams and the experimental 

procedures.  Start up procedures, how to run the experiments, clean up and shut down 

protocols are included in the Appendices. 

 

5.1. Solubility Systems 

In determination of phase behavior of multi-component systems at high pressure, 

there are static and dynamic methods; these methods were reviewed in Chapter 2. Both 

techniques were used in this research and the experimental set-ups are presented next. 

Even though when using static systems just one sample mixture can be studied per 

loading, it requires minimum amounts of components and allows visualization of the 

phase transitions. Dynamic systems allow collection of large amounts of solubility and 

equilibrium data, but they require good handling of the operation conditions to avoid 

inaccurate solubility data. 
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5.1.1. Static Cloud Point (Phase Analyzer)  

The experimental system used is shown in Figure 5.1. One of the most important 

components of the system was the Phase Monitor SPM20 (Thar Technologies), which 

consists of a high pressure variable–volume cell (5 – 15 ml) made in stainless steel where 

the mixture to be studied was placed. The temperature was controlled automatically 

between room temperature and 150±0.1 ºC. The pressure was adjusted manually using a 

mechanical syringe pump (Ruska 2200), and by decreasing the vessel volume the 

pressure was increased and vice versa. The pressure and temperature signals in the vessel 

were transferred to a portable PLC controller and the mixture behavior could be 

visualized on a video monitor. 

A stirrer was used to obtain a homogeneous mix of Chitosan-DMSO-SCCO2 

inside the vessel. The phase behavior phenomena occurring inside the cell were 

visualized on a video monitor using a camera placed directly over a sapphire window. 

The carbon dioxide used in this system was pumped with a syringe pump (ISCO 

100DX) equipped with a cooling jacket to assure that the CO2 withdrawn from cylinder 

tank remained in the liquid phase. 
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Figure 5.1. Cloud Point Experimental Set-Up Diagram. 

This experimental procedure is described step by step in the flow diagram 

presented in Figure 5.2. 
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Figure 5.2. Flowchart for the Static Solubility Procedure. 

 

Different solutions of Chitosan-DMSO (0.1, 0.5 and 1 mg/ml) were prepared by 

weighing 0.01g; 0.05g and 0.1g of Chitosan respectively using an analytical balance, 

measurable to ± 0.0001 g, and mixing this powder with 100ml of DMSO measured with a 

pipette, measurable to ± 0.001 ml.  

After the solution was prepared, the liquid Chitosan-DMSO mixture was loaded 

into the cell using a pipette. Then the mixer assembly was screwed, closing the vessel. At 

this stage, the volume of the vessel was adjusted to 5 ml and the remaining air was 

purged out slowly with carbon dioxide. When the purging was completed, the outlet 

valve was closed, and the vessel was filled with CO2 at a constant flow rate of 1ml/min, 

using the automatic syringe pump, until the desired pressure was reached. When the 
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desired pressure was obtained, the inlet valve of the vessel was closed. At this point 

pressure, temperature, and CO2 volumes that had been fed into the vessel were recorded 

as initial operation conditions.  

Next, the vessel assembly was tilted into a horizontal position where the interface 

between Chitosan-DMSO and SCCO2 phases in the cell could be visualized in the 

monitor. Then the desired temperature of the vessel was adjusted with the controller, and 

a period of 2 h is given for the system stabilization. The stirrer was activated and once the 

pressure and the temperature in the vessel were constant, the contents of the vessel were 

compressed by reducing its volume by moving the piston with the mechanical syringe 

pump, until a cloudy phase was formed. Once in the one-phase region, the pressure was 

lowered rapidly by moving the piston backwards until two phases were visualized.  The 

pressure was raised slowly until a cloudy phase was formed again.  This procedure was 

repeated five times for each sample in order to obtain repeatability. Next, the temperature 

of the system was changed (308, 313, 318 K) and the entire procedure was repeated to 

obtain more solubility data with the same load. (The step by step procedure is presented 

in Appendix C). 

 

5.1.2. Dynamic Solubility  

Figure 5.3 shows a diagram of the system used in this research. The set-up was 

built with off-the-shelf equipment and is similar to ones used by several investigators 

including Johnston and Ecker 1981, and Krukonis and Kurnik 1985. 

The basic structure of this system consisted of two pumps (one syringe pump 

(ISCO 500) for the supercritical fluid and a HPLC pump (Waters 600E) for the liquid 
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cosolvent), a preheater coil, an inline mixer and the extraction cell where the solid solute 

was placed. The solute extracted with the supercritical mixture was accumulated in a 

collection vessel and analyzed with an UV (HP 1050), while the expanded supercritical 

flow was measured with a Digital Wet Test Meter (Model 63135 PAC). 

 

Figure 5.3. Dynamic Solubility Set-Up Diagram. 

(1) ISCO pump, (2) ISCO pump controller, (3) pump chiller, (4) HPLC pump, (5, 6) 

check valves, (7) water tank, (8) coil heat exchanger, (9) inline mixer, (10) extraction 

vessel, (11, 12) thermocouples, (13) Immersion circulator, (14) bypass line, (15) back 

pressure regulator, (16) pressure gauge, (17) collection vessel, (18) wet test meter.  

 

The experimental procedure to study the ternary system Chitosan-DMSO-SCCO2 

dynamic solubility has different steps and operation conditions that can be easily 

visualized in the flow chart presented in Figure 5.4. Liquid carbon dioxide (CO2) was 

charged to the system using the syringe pump, which was kept at -3 C with the help of a 

chiller, to ensure the CO2 was at liquid phase while it was pumped into the system.  This 
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guaranteed a constant flow rate. The co-solvent used in this particular case was DMSO, 

which was pumped into the system by the HPLC pump.  

After leaving the pumps, the CO2 and the DMSO flowed through a 10 m stainless 

steel coil submerged into a water bath at constant temperature (the pre-heater stage).  

Then the DMSO-CO2 flow passed through an inline mixer, ensuring a homogeneous 

mixture at the bath temperature before it contacted the heavy solute. The supercritical 

solution was then fed to the extraction vessel, where the heavy solid (Chitosan) was 

carefully packed to ensure proper contacting, to maintain the solute in the column even if 

it liquefied at operating conditions, and to allow sufficient room for the heavy liquid to 

expand as the supercritical fluid dissolved in it. 

 

Figure 5.4. Flowchart for the Dynamic Solubility Procedure. 

 

The column was packed with a stainless steel mesh, followed by a layer of glass 

wool at the bottom, then the solute was added, and finally another layer of glass wool at 

the top and the stainless steel mesh. For this research the glass wool and all the glassware 

used were pretreated with 5% hexamethyldisilazane (HMDS) solution and heated in the 

Liquid CO2 

Liquid DMSO 

Preheater Inline mixer 
Extraction vessel 

loaded w/Chitosan 

Back Pressure 

Regulator (BPR) 

Wet Test Meter 

DMSO-Chitosan 

collected in a fixed 

amount of water 

Gas CO2 

Temperature controlled environment 
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oven at 70 C for 12 h, creating a chemical bond with the silanol groups (Si-OH), which 

could capture the Chitosan producing wrong solubility data. 

After the mixture left the extraction vessel, it was expanded through a mechanical 

back pressure regulator and collected over water into a glass collection vessel. To avoid 

clogging, the back pressure regulator was wrapped with a heating tape, keeping it at a 

temperature greater than the bath temperature, to compensate any Joule-Thomson cooling 

during the expansion of the CO2. The Chitosan required for this research was soluble in 

water. Therefore, a measured amount of water was used to collect the extracted solute, 

and the concentration of Chitosan in the resulting solution was determined through UV 

analysis. The flow rate of the expanded CO2 was measured with a Wet Test Meter 

connected to the glass collection vessel and DMSO amounts were determined from mass 

balance. The step by step procedure is presented in Appendix D. 

 

5.2. Encapsulation Set-up 

As is the case in the development of most new methods, the encapsulation set-up 

presented in Figure 5.5 was built with off-the-shelf equipment in order to minimize 

delivery time and maximize flexibility in design as well its retrofit. 

The major pieces of equipment that were integrated within this system were a 

high pressure pump (P-200A THAR) used to feed the supercritical carbon dioxide, an 

HPLC pump for the Chitosan-DMSO mixture, a constant temperature air box where the 

encapsulation cell was placed, a heating bath connected to a heat exchanger placed inside 

the box to ensure constant temperature environment, three thermocouples (used to read 

the temperature inside the box and at the entrance and outlet of the cell), a lamp, a video 
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camera/recorder system, heating tape elements over the encapsulation cell and the back 

pressure regulator, a back pressure regulator, a collection vessel and Wet Test Meter. The 

high pressure pump was connected to a chiller to ensure carbon dioxide will be at the 

liquid phase at the pump all the time, avoiding cavitation problems.  

The insulation box was used to keep the stainless steel coil that carries the carbon 

dioxide and the coating solution (Chitosan-DMSO) injection system at the same 

temperature, ensuring supercritical conditions before reaching the encapsulation vessel. 

The encapsulation vessel used was a modified Jerguson flat glass gauge, 

consisting of three parts. The solid central body or chamber was machined from a 

stainless steel bar, where one stainless steel sintered distributor plate with 0.5 m holes 

was placed at the bottom of the cell and another stainless steel sintered frit plate with 0.2 

m holes was located at the top, acting as a filter to stop solid particles from leaving the 

vessel. The frit at the bottom has a 1/16” hole in the center for the coating solution 

injection tubing to pass through (Figure 5.5). The other two parts were the side bar covers 

that held one tempered glass each, and steel bolt ant nuts to keep all the three pieces 

together (Figure 5.6), even at high pressure and temperature (2220 psig, 600 F). 
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Figure 5.5. Encapsulation Set-Up Diagram. 

(1) High pressure pump (P-200A THAR), (2) Pump controller, (3) Pump chiller 

(Refrigerator Recirculator, PolyScience), (4) HPLC pump (Waters 600E), (5, 6) Check 

valves, (7) Circulator bath (Haake B81), (8) Radiator, (9) Stainless steel coil, (10) 

Insulation box, (11) Windowed encapsulating vessel (Jerguson gauge), (12,13,14) K 

thermocouples, (15,16,17) Pressure gauges, (18) Back pressure regulator, (19) Camera, 

(20) Collection vessel, (21) Digital wet test meter (PAC), (22) Coating system detail: (a) 

½ in SS Tee, (b) 1/16 in SS tubing, (c) ¼ in SS tubing, (d) SS distributor 0.5 m holes. 

 

 

Figure 5.6. Flat Glass Gauge. (Jerguson gauge)  

(a) Front view includes window, (b) Side view. 
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To start the encapsulation procedure, the vessel was preloaded with the solid 

sample to be encapsulated and sealed following a specific procedure included in 

Appendix E. Then the heating bath was activated six hours before the start of the 

experiment, to guarantee a stable temperature inside and outside the cell.  Carbon dioxide 

was charged to the system using a continuous pump, which was kept at 0 C with the 

help of a chiller to be sure the CO2 was at liquid phase while it was pumped into the 

system. The pump was operated in the continuous flow rate mode (Mode E), and the 

system pressure was controlled with a back pressure regulator. After leaving the pump, 

the CO2 flowed through a coil located in a constant temperature air bath, where the CO2 

was pre-heated in order to reach supercritical conditions before reaching the 

encapsulating vessel.  

In order to fluidize the particles, the supercritical CO2 flow rate determination was 

required. After reviewing different equations like Wen & Yu 1966, Riba 1978 and 

Baeyens 1981, the first one was chosen following the recommendations of Carsten Vogt, 

2005. There were two imperative numbers to estimate before starting the experiments: 

the minimum fluidization velocity required to fluidize the particles (umf) and terminal 

velocity (ut). 
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Fluidization Velocity for CaO particles with SCCO2 at constant pressure P=100bar
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Figure 5.7. Carbon Dioxide Flow Required to Fluidize CaO Particles at 100 Bar. 
Fluidization Velocity for TiO2 particles with SCCO2 at constant pressure P=100bar
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Figure 5.8. Carbon Dioxide Flow Required to Fluidize TiO2 Particles at 100 Bar. 

 

As can be seen in Figures 5.7 and 5.8, operating at constant pressure of 100 bar 

even a T of 10 K did not cause major adjustments on the CO2 flow rate required to 

fluidize the particles, compared to the effect of particle size. The CaO and TiO2 samples 
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used were made up of different particle sizes between 0.1 m to 7 m, which promoted a 

uniform fluidization. The best results were obtained for 2-5 g CO2/min. Sample 

calculations and tabulated results are shown in Appendix F. 

Once the system reaches the required operation conditions (T and P), and the 

particles are fluidizing properly, the coating solution, a DMSO-Chitosan mix, was 

pumped into the system by the HPLC pump, and the supercritical ternary system 

(Chitosan-DMSO-CO2) stayed in contact with the solid particles for at least 30 minutes. 

The system was considered stable when the temperature difference registered at the inlet 

and outlet of the encapsulation cell was no more than 1 C. The heating tape located over 

the cell was turned on and the temperature was controlled with an on/off controller.  The 

coating material started to precipitate over the solid particles or core material, keeping the 

temperature constant to avoid re-dissolution of the polymer.  The carbon dioxide flow 

was increased and the DMSO left the encapsulation vessel with the carbon dioxide. 

After the DMSO-CO2 mix left the coating vessel, it was expanded through a 

mechanical back pressure regulator and collected over a known amount of water into a 

glass collection vessel. To avoid clogging, the back pressure regulator was maintained at 

a temperature greater than the system temperature to compensate any Joule-Thomson 

cooling during the expansion of the CO2. In order to establish when all the DMSO had 

been extracted to avoid the coating to be re-dissolved, a measured amount of water was 

used to collect the DMSO-SCCO2 mix, and the DMSO concentration was determined 

through UV analysis using a quartz cuvette. The flow rate of the expanded CO2 was 

measured with a Wet Test Meter connected to the glass collection vessel. The step by 

step procedure is presented in Appendix E. 
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5.3. Sample Analysis 

Different characterization analysis methods were used to study the particles 

before and after encapsulation, as well as the encapsulant material itself.  

5.3.1. Fourier Transform Spectroscopy (FTIR) 

FTIR is an analysis technique that provides information about the chemical 

bonding or molecular structure of materials. This technique works on the fact that bonds 

and groups of bonds vibrate at characteristic frequencies. A molecule that is exposed to 

infrared rays absorbs infrared energy at frequencies that are characteristic to that 

molecule. During FTIR analysis, the sample is subjected to a modulated IR beam, and the 

sample‟s transmittance and reflectance of the infrared rays at different frequencies is 

translated into an IR absorption plot. The resulting FTIR spectra pattern is then analyzed 

and matched with known materials in the FTIR library of the computer processor. 

FTIR spectroscopy does not require a vacuum, since neither oxygen nor nitrogen 

absorb infrared rays. FTIR can be used with very small quantities of sample, whether 

solid, liquid or gaseous. 

For this research, all the samples analyzed were in the solid state: calcium oxide, 

titanium dioxide and Chitosan. The solid samples were milled with potassium bromide 

(KBr) to form a very fine powder. This powder was then compressed into a thin pellet 

which could be analyzed, as KBr is also transparent in the Perkin Elmer 4000 FTIR. 

 

5.3.2. Ultraviolet Visible Absorption Spectroscopy (UV) 

This analysis uses light in the ultraviolet and visible range.  In this region of the 

electromagnetic spectrum, the molecules experience rotational and vibrational transitions, 
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creating a complex and unique combination used to identify and differentiate chemical 

components. 

UV spectroscopy is used for quantitative determinations. The Beer-Lambert law 

states that the absorbance of a solution is directly proportional to the concentration of the 

absorbing species in the solution and the path length. Therefore for a fixed path length, 

UV can be used to determine the concentration of the absorber in a solution by using a set 

of known concentration solutions to create a calibration curve that will show how the 

absorbance changes with the concentration. 

The concentration of Chitosan was determined quantitatively by measuring the 

UV-Vis absorbance of the carbonyl and amino groups. This peak absorbance was 

analyzed using a V-530 UV-Vis spectrophotometer. 

 

5.3.3. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) 

SEM is one of the most useful instruments in the study of solid materials.  It is 

easy to operate, requires minimal sample preparation, is a non-destructive analysis 

system and enables rapid data acquisition. The SEM is used to generate high-resolution 

images and to show chemical composition of sampling areas from 1cm to 5 microns with 

magnification ranges from 20X to 30,000X. The equipment used for this research was the 

Hitachi 800. 

The electron scanning microscope uses a focused beam of high energy electrons 

to generate a variety of signals at the surface of solid specimens. These signals include 

secondary electrons that produce SEM images, backscattered electrons, diffracted 
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backscattered electrons used to determine crystal structures, photons that are used for 

elemental analysis (EDS), and visible light and heat. 

Samples must be solid and they must fit into the microscope chamber. Samples 

must be stable in a vacuum on the order of 10
-5

 to 10
-6

 torr and dry; in this particular 

research all the samples were dry particles, coated and uncoated. Sample preparation was 

minimal. All the samples were dried under vacuum and kept in a desiccator and sprinkled 

over a carbon tape. In order to prevent charge buildup, the samples were coated with a 

thin layer of conductive material (gold), obtaining high resolution images. 

Another application used extensively with the Hitachi 800 was the Automated 

Particle Analysis tool.  This application is designed to characterize hundreds of particles 

by size, shape and chemical composition. 

 

5.3.4. Transmission Electron Microscopy (TEM) 

This is a microscopic technique whereby a beam of electrons is transmitted 

through a sample, interacting with it as it passes through. An image is formed as a result 

of this interaction between the electrons and the sample components; then the image is 

magnified and focused onto an imaging device (screen, photographic film or CCD 

camera).    

A TEM was used in this research to visualize and measure the Chitosan coating 

over the CaO and TiO2 particles, based on the structural difference (organic or inorganic) 

of the coated particles. The sample was prepared by placing a drop of the solution made 

with Ethanol and coated particles on a Formvar-coated Cu TEM grid that was dried under 
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a lamp in ambient conditions. The grid was then placed within the TEM vacuum chamber 

(model FEI Morgagni 268D) and examined. 

 

5.3.5. Atomic Force Microscopy (AFM) 

This is a high resolution scanning microscopy technique that offers tridimensional 

particle visualization with proved resolution on the order of fractions of nanometers. The 

AFM consists of a cantilever with a sharp tip at the end that is used to scan the specimen 

surface. 

This analysis technique was useful to obtain topographic imaging of the uncoated 

and coated particles, including surface roughness. The sample preparation for this 

analysis was simple and basic: double-sided sticky tape was used to attach the loose 

particles over a thin flat piece of glass. 

There are two basic operation modes for the AFM: static and dynamic. The static 

mode was used in this research.  In this approach, the cantilever was dragged across the 

surface of the sample and the contours of the surface, and uncoated and coated particles 

were measured directly using the deflection of the cantilever. 

 

5.3.6. Differential Scanning Calorimeter with Thermal Gravimetric Analysis (DSC-

TGA) 

Thermal analyses are useful techniques to determine properties of materials as 

they change with temperature. To determine the inorganic-organic composition of the 

encapsulated particles, two methods were used in this research: differential scanning 

calorimetry and thermal gravimetric analysis with a TA SDT Q600 DSC-TGA system. 
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These two features were utilized for two different reasons. Differential scanning 

calorimeter measures the heat flow and the glass transition temperature of the polymer 

coating (Chitosan). Thermogravimetric analysis (TGA) measures the weight changes in 

material, determining the composition (organic coating-inorganic core) of the samples. 

Samples were heated in air at a rate of 5 C/min from room temperature to 700 C. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

The objective of this research had been to encapsulate small solid particles using a 

biopolymer, Chitosan, with supercritical CO2 as a solvent and DMSO as a cosolvent. In 

order to accomplish this goal some initial steps had to be accomplished.  First, a set of 

experiments was performed to determine the cloud point for the system DMSO-CO2, in 

order to validate the experimental set-up and the procedures with published data. The 

next step was determining the cloud point for the ternary system Chitosan-DMSO-CO2 

system. There is no such published polymer solubility data.  In order to obtain data at the 

operation conditions for the encapsulation system, a dynamic solubility experimental 

system was developed and used to obtain solubility data. Finally, CaO and TiO2 particles 

were encapsulated with Chitosan in a fluidized bed using a temperature swing to initiate 

dissolution. These experimental results and characterization will be presented in this 

chapter. 

 

6.1. Density Experiments 

 Some of the models used to calculate thermodynamic properties of polymers-

solvents solutions require that the concentration should be expressed in terms of volume 

fractions.  For this reason, binary solution characterization information was required. To 

calculate volume fraction accurately, the partial molar volumes should be known, and as 
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a consequence it was important to have accurate density data for different compositions 

of the binary mixture. In this particular case, DMSO-Chitosan, the solution was prepared 

by mass using an analytical balance with ± 0.0001g accuracy (OHAUS, Adventurer-Pro). 

The density measurements were made with a certified density meter with 0.0001g/cm
3
 

accuracy (DMA 4000, Anton Paar). Six different solutions were prepared by dissolving 

Chitosan powder in DMSO at room temperature.  The concentrations expressed in weight 

percentage of Chitosan were: 0.15, 0.88, 1, 2.57, 4.73 and 17.36 w/w %.  The density 

measurements were made in a temperature range of 298.15-358.15ºK. The experimental 

data obtained was as follows. 

 

Table 6.1. Density Data for the Mixture DMSO-Chitosan. 

(Chitosan concentration w/w%) 

T ( K) 
298.15 308.15 318.15 328.15 338.15 343.15 348.15 358.15 Chitosan  (g/cm

3
) 

0% 
 

1.0966 1.0852 1.0752 1.0652 1.0551 1.0501 1.0451 1.0350 

STD - - - - - - - - 

0.15% 
 

1.0967 1.0967 1.0967 1.0967 1.0967 1.0967 1.0967 1.0967 

STD 
0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

0.88% 
 

1.0968 1.0876 1.0777 1.0677 1.0572 1.0522 1.0472 1.0372 

STD 
0.0007 0.0006 0.0006 0.0006 0.0001 0.0001 0.0001 0.0001 

1% 
 

1.0974 1.0890 1.0792 1.0695 1.0594 1.0544 1.0493 1.0386 

STD 
0.0016 0.0006 0.0008 0.0008 0.0005 0.0002 0.0001 0.0001 

2.57% 
 

1.1014 1.0940 1.0845 1.0741 1.0611 1.0591 1.0544 1.0450 

STD 
0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 

4.73% 
 

1.1095 1.1046 1.0897 1.0800 1.0702 1.0653 1.0604 1.0505 

STD 
0.0072 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

17.36% 
 

1.1417 1.1335 1.1226 1.1129 1.1021 1.0971 1.0947 1.0826 

STD 
0.0005 0.0000 0.0000 0.0000 0.0002 0.0001 0.0021 0.0009 
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In order to be able to appreciate the effect that temperature and concentration had 

over the density of the mixture, the data offered in Table 6.1 is plotted in Figure 6.1. It 

was seen that under isothermal conditions, the density of the mixture increased 

proportionally as Chitosan concentration rose, and for a fixed concentration the density of 

the mixture decreased as the temperature increased. 

 

Figure 6.1. Density Isotherms as a Function of Chitosan Concentration 

for Different DMSO-Chitosan Solutions. 

 

6.2. Cloud Point Experiments 

The cloud point experiments were performed with the static set-up for the solvent 

system DMSO-SCCO2 and then for the ternary system Chitosan-DMSO-SCCO2. 

 

6.2.1. DMSO-CO2 System 

Polymer solubility in CO2 was very low, so a cosolvent was used.  As has been 

found in this particular case, Chitosan is only soluble in water, so DMSO (dimethyl 
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sulfoxide) was the only option, since water solubility in SCCO2 is very low and other 

researchers like Rajasingam 2004, Gonzalez 2002 and Kordikowski 1995 studied the 

solubility of DMSO in supercritical dioxide for antisolvent process.  

The experimental set-up used was presented in Chapter 5 section 5.1.1.  One of 

the most important characteristics of this system was the ability to adjust pressure and 

temperature for a fixed concentration. This translated into data repeatability and multiple 

data points (P, T) for a given concentration. Pressure and temperature inside the vessel 

were tracked continuously in conjunction with phase behavior by having all the 

information projected live on the video monitor. 

A stirrer was used to obtain a homogeneous mixture of DMSO-SCCO2 inside the 

vessel. The phase behavior phenomena occurring inside the cell were visualized on a 

video monitor using a camera placed directly over a sapphire window. 

The carbon dioxide used in this system was pumped with a syringe pump (ISCO 

100DX) equipped with a cooling jacket to assure that the CO2 withdrawn from cylinder 

tank remained in the liquid phase. 

The first step of this experimental procedure was to load the liquid DMSO into 

the cell using a pipette (measurable to ± 0.01 ml), then the mixer assemble was screwed, 

closing the vessel. At this point, the volume of the vessel was adjusted to 5 ml and the 

remaining air was purged slowly with carbon dioxide. When the purging was completed, 

the outlet valve was closed, and the vessel filled with CO2, at a 1ml/min constant flow 

rate, using the syringe pump until the desired pressure was reached.  At this point, the 

inlet valve of the vessel was closed. The temperature in the cell was adjusted and the 

stirrer was activated. When the pressure and the temperature in the vessel were constant, 
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the contents of the vessel were compressed by moving the piston with the mechanical 

syringe pump. Once a turbid or cloud-phase was observed, the temperature and pressure 

values were recorded, then the pressure was lowered by moving the piston backwards 

until the turbidity disappeared, and then raised slowly until the turbidity appeared.  This 

procedure was repeated five times for each sample in order to obtain repeatability. Next, 

the temperature of the system was changed and the entire procedure was repeated to 

obtain more solubility data with the same load. The experimental data obtained is 

presented in the next figure with the existing published data. 

The temperature selected for these experiments (314.2, 318.2 and 328.2 K) was 

based on the published data and the requirements for the encapsulation of natural or 

pharmaceutical products (thermal liable compounds). The results obtained were used to 

validate the method and at the same time to obtain temperature operation ranges for the 

coming experiments. 

The DMSO molar fraction selected for this set of experiments was based on the 

envisioned coating method, where a small quantity of cosolvent was used, in order to 

avoid high concentration of DMSO on the encapsulated particle that could cause the 

coating to re-dissolve.  

As can be seen in Table 6.2, experimental cloud point for the system DMSO-CO2 

was collected in a temperature range of 314.2 K to 328.2 K and pressures from 89 to 

133.5 bars. The standard deviation based on the five readings made for each data point is 

less than one bar, indicating the experimental method is accurate. 
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Table 6.2. Experimental Cloud Point Data DMSO-CO2 

T ( K) 

 1 K 
XCO2 Pave (bar) STD(bar) 

314.2 

0.90 89.0 0.51 

0.91 90.3 0.50 

0.95 91.0 0.34 

0.96 91.2 0.52 

0.97 92.2 0.57 

0.98 92.1 0.48 

318.2 

0.90 103.0 0.62 

0.91 104.3 0.60 

0.94 105.0 0.75 

0.95 105.8 0.46 

0.97 106.2 0.59 

328.2 
0.90 129.0 0.60 

0.94 132.9 0.37 

0.95 133.5 0.45 

 

The isotherms presented in Figure 6.2 are consistent with those reported by 

Rajasingam 2004, Gonzalez 2002 and Kordikowski 1995. 
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Figure 6.2. Cloud Point Experimental Data for the System DMSO- CO2 
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Cloud Point DMSO-CO2
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Figure 6.3. Detail Cloud Point Experimental Data for the System DMSO-CO2 at 314 K. 

Shows Standard Deviation Presented in Table 6.1. 

 

Figure 6.3 is used to show the error bars on a small section of the cloud point plot 

presented in Figure 6.2.  Since the standard deviation is low and varies between 0.34 to 

0.75 bars, it is not possible to see it on the original scale. The variation observed in Figure 

6.2 can be attributed to the different experimental methods.  Rajasingam and 

Kordikowski used a sampling method where pressure drops of 1 bar were reported as 

well as 10% uncertainty of their measurements. Gonzalez used a set-up similar to the one 

presented in this research, but the DMSO volume required was higher since this 

information would be applied for anti-solvent processes, and this value was measured by 

the number of rotations of the handle on a manual pump. 
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6.2.2. Chitosan-DMSO-CO2 System 

Some biopolymers frequently used in pharmaceutical applications such as poly-

(D-lactide) (PDLA), poly-(L-lactide) (PLLA), poly-(DL-lactide-co-glycolide) (PGLA), 

Dextran, Inulin and poly vinyl alcohol (PVA), are insoluble in SCCO2, for this reason 

different authors have been studying and processing them on a ternary system, polymer-

DMSO- SCCO2 (Reverchon 2000, Perez de Diego 2004).  However, no data on the 

system Chitosan-DMSO- SCCO2 has been published. 

The next logical step was to obtain cloud point experimental data for this ternary 

system, since the binary data cosolvent-solvent (DMSO-CO2) was already obtained. 

For this purpose, the exact same set-up was used, Phase Monitor SPM20 (made 

by Thar Technologies), but in this case different solutions Chitosan-DMSO (0.1, 0.5 and 

1 mg/ml) were prepared by measuring the amount of Chitosan using an analytical 

balance, measurable to ± 0.0001 g, and mixing this powder with the corresponding 

volume of DMSO measured with a pipette, measurable to ± 0.001 ml. 

The temperature selected for these experiments (308.2, 313.2 and 318.2 F) was 

based on the requirements for the encapsulation of natural or pharmaceutical products 

(thermally labile compounds).  

The DMSO molar fraction used was 10% or less in order to be consistent with the 

set of experiments performed for the system DMSO-CO2. 

In Table 6.3, the experimental cloud point data for the system Chitosan-DMSO-

CO2 was collected in a temperature range of 308.2 K to 318.2 K and pressures from 

92.4 to 156.7 bars were presented, (solubility was expressed on mass basis in Table 6.3, 

and Figures 6.4, 6.5 and 6.6). The standard deviation value presented in this table was on 
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average less than one bar. It was based on five readings made for each experimental 

condition, indicating that the experimental method is accurate. In total, for every 

temperature, 35 data points were collected, distributed on seven compositions and five 

readings for each pressure.  

 

Table 6.3. Experimental Cloud Point Data Chitosan-DMSO-CO2. (Mass fraction) 

T ( K) 

 1 K 
wCO2 wDMSO wChitosan Pave (bar) STD (bar) 

308.2 

0.93 7.29E-02 6.65E-06 109.0 0.6 

0.92 7.84E-02 7.15E-06 92.4 0.5 

0.92 8.22E-02 7.50E-06 96.1 0.4 

0.86 1.42E-01 1.29E-05 100.8 0.4 

0.93 7.28E-02 3.32E-05 109.9 0.6 

0.94 6.45E-02 5.89E-05 119.8 0.7 

0.93 7.34E-02 6.70E-05 121.8 0.2 

313.2 

0.93 7.29E-02 6.65E-06 122.7 0.1 

0.92 7.84E-02 7.15E-06 95.3 0.8 

0.92 8.22E-02 7.50E-06 103.1 0.6 

0.86 1.42E-01 1.29E-05 113.9 0.6 

0.93 7.28E-02 3.32E-05 126.9 0.6 

0.94 6.45E-02 5.89E-05 138.0 0.5 

0.93 7.34E-02 6.70E-05 146.5 0.5 

318.2 

0.93 7.29E-02 6.65E-06 128.1 0.5 

0.92 7.84E-02 7.15E-06 103.7 0.7 

0.92 8.22E-02 7.50E-06 115.1 0.2 

0.86 1.42E-01 1.29E-05 121.8 1.1 

0.93 7.28E-02 3.32E-05 136.4 0.8 

0.90 9.50E-02 4.34E-05 145.5 0.3 

0.94 6.45E-02 5.89E-05 154.0 0.4 

0.93 7.34E-02 6.70E-05 156.7 0.3 

 

As shown in Figure 6.4, Chitosan solubility increased proportionally with the 

pressure at constant temperature, and solubility decreased with temperature increments at 

constant pressure. This was a general effect that was suitable to the short-range attractive 

forces between solvent and solute. The solubility of a low-volatile solute like Chitosan, 

was enhanced as the density of the volatile solvent (CO2) increased, as a consequence of 

temperature drop in an isobaric process or a pressure rise in an isothermal process. 
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Figure 6.4. Cloud Point Experimental Data for Chitosan-DMSO- CO2 (80-160 Bar). 

 

 

Figure 6.5. Cloud Point Experimental Data for Chitosan-DMSO- CO2 (100-115 Bar). 
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In Figure 6.5, the error bars from a small section on the cloud point plot data in 

Figure 6.4 is presented, since the standard deviation was low and varied between 0.2 to 

1.1 bars, it was not possible to show it on the original scale. 

A drastic change of slope was observed when collecting the cloud point data and 

this is presented in Figure 6.6. This particular change of the solubility values could be 

attributed to the fact that as this was a low solubility system.  The critical point of the 

solvent was close to the lower critical endpoint of the mixture. This means that the 

behavior of the fluid phase in the proximity of the critical endpoint was strongly 

influenced by the proximity of the critical point of the solvent. 

At the critical endpoint, the solubility did change with infinite slope in the isobar 

as a function of temperature, or in the isotherm as a function of pressure, and this infinite 

slope was caused by the high vulnerability of the solution at the critical endpoint. 

 

Figure 6.6. Slope Change at the Proximity of the CO2 Critical Point  

for the System Chitosan-DMSO-CO2. 
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In general, this cloud point experimental data confirms the hypothesis that the 

solubility of this polymer (Chitosan) is low, compared to the solubility of the cosolvent 

(DMSO).  This suggests that an antisolvent or a perturbation coating method should be 

used when a solution of DMSO-Chitosan will be used as the coating mix and the CO2 

will be used to extract the DMSO. The Chitosan will be precipitated over the particles to 

be encapsulated either by saturating and expanding the DMSO with CO2 or by 

temperature perturbation. 

 

6.3. Solubility Experiments 

With the cloud point information available for the binary and ternary system, next 

a dynamic solubility data for the system Chitosan-DMSO-CO2 was required in order to 

establish the operation conditions for the encapsulation process. 

The dynamic solubility system was useful to reproduce the solubility data 

obtained in the static set-up, this time having a continuous process under supercritical 

conditions. This experiment was considered as the first stage for the encapsulation 

process, since it was possible to establish proper sampling procedures, ascertain 

experimental difficulties and determine settings like temperature, pressure and flow rates.  

In order to get the solubility information for the ternary system, the concentration 

of each component needs to be determined or calculated. The UV system was used to 

establish the Chitosan concentration in water-DMSO solutions, and the first step was to 

ensure that the DMSO presence in the water solution would not interfere with the 

Chitosan determination. 
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After the UV calibration procedure, which is presented in full detail in Appendix 

G, it was established that disposable PMMA cuvettes could be used to determine 

Chitosan concentration in Water –DMSO solutions at a wavelength of 294 nm. 

The UV spectra in Figure 6.7 shows the absorbance of the Chitosan collected in 

200 ml of DI water when the supercritical solution Chitosan-DMSO-CO2 leaving the 

extraction cell was bubbled into an Erlenmeyer flask containing the water. 

 Chitosan Absorbance Experimental Data
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Figure 6.7. UV Spectra for Chitosan-DMSO-Water Solutions. 

 

Using the linear relation presented in Appendix G and the UV results at 

absorption band of 294 nm from Figure 6.7, the Chitosan concentration was determined 

as presented in Table 6.4. 
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Table 6.4. Chitosan Molar Concentration in 200 ml of Sample Solution. 

Absorbance C (mg/ml) Mol Chitosan 

0.0078 0.01 2.78E-07 

0.0138 0.02 8.00E-07 

0.0169 0.03 1.07E-06 

0.0211 0.04 1.43E-06 

0.0225 0.04 1.56E-06 

0.0847 0.11 4.20E-06 

0.0205 0.03 1.38E-06 

0.0529 0.06 2.32E-06 

 

The DMSO concentration was determined as a function of the operation time and 

the flow rate of the HPLC pump, which was calibrated before operating the system to 

ensure accurate values. The UV was not an option in this case, since Chitosan-DMSO 

peaks overlapped in the region 195-245 nm and they could not be de-convoluted. 

 

Table 6.5. DMSO Molar Concentration in 200 ml of Sample Solution. 

Operation 

Time (min) 

Flow 

(ml/min) 
Mol DMSO 

278.00 0.16 0.63 

295.00 0.17 0.71 

299.15 0.17 0.72 

288.18 0.17 0.69 

315.00 0.17 0.75 

360.28 0.17 0.86 

235.00 0.17 0.56 

365.00 0.17 0.87 

 

The amount of carbon dioxide used to extract the Chitosan was determined in two 

different ways: using the Improved Rackett Equation (IRE) to determine the number of 

moles of liquid CO2 at -3.0 C pumped by the ISCO syringe pump through the extraction 

cell, and from the volume of expanded CO2 registered by the Wet Test Meter (WTM) 

located at the end of the system (Appendix H). The results obtained were similar, since 
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the error of the IRE at this low temperature was less than 0.2% compared to the IUPAC 

Tables (Smeltzer, 2006).  

 

Table 6.6. Moles of CO2 Used to Extract DMSO-Chitosan 

T WTM 

( C) 

Mol CO2 

(WTM) 

T pump 

( C) 

Mol CO2 

(IRE) 
% Diff 

24.50 5.93 -3.00 5.93 0.14 

24.00 6.43 -3.00 6.29 2.27 

24.20 6.26 -3.00 6.38 -1.82 

25.00 6.19 -3.00 6.14 0.81 

25.40 6.94 -3.00 6.72 3.20 

24.40 7.70 -3.00 7.68 0.22 

26.20 5.04 -3.00 5.01 0.57 

25.20 7.74 -3.00 7.78 -0.47 

 

To conclude, the information was put together and translated as solubility data, 

including Chitosan, DMSO and CO2 fractions in Table 6.7. Usually, this information is 

required for modeling or simply as guidance when studying the solubility of a multiple 

component system for extraction or encapsulation purposes. However, in this particular 

case, the information was not available and is a contribution of this research. It is 

important to mention that every operation condition was evaluated twice and T and P 

were registered at three different points of the system.  The accuracy of these readings is 

confirmed with the STD values presented in Table 6.7.  
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Table 6.7. Solubility Data for the System Chitosan-DMSO-CO2 

T ( C) STD ( C) P (bar) STD (bar) XChitosan XCO2 XDMSO 

36.0 0.50 97.3 0.7 4.25E-08 0.9045 0.0955 

35.7 0.15 98.8 0.5 1.14E-07 0.8990 0.1010 

33.9 0.20 103.4 0.4 1.50E-07 0.8991 0.1009 

33.1 0.34 104.4 0.4 2.09E-07 0.8990 0.1010 

34.8 0.23 105.4 0.7 2.08E-07 0.8991 0.1009 

34.1 0.17 109.3 0.8 2.72E-07 0.8990 0.1010 

35.0 0.21 110.5 0.2 2.47E-07 0.8990 0.1010 

36.1 0.11 118.9 0.5 4.88E-07 0.8985 0.1015 

 

Once all the dynamic solubility data was obtained, the next step was to compare 

these results with the cloud point experimental data for the ternary system.  This 

information is presented as a plot in Figure 6.4. 

It is important to note that the cloud point data obtained from the static set-up or 

solubility cell corresponded to the unique points where the components of the chemical 

system co-existed in equilibrium, the mixture became opaque and it was no longer 

possible to see the stirrer or the polished internal surface of the high pressure cell. The 

dynamic set-up provided solubility data through leaching of the solid at a rate where the 

extract phase was saturated. These results are interrelated and they should be similar, but 

not necessarily exact matches, since the measurement methods were different, even 

though (as confirmed in Figure 6.8) for a temperature of 35 C both results presented the 

same behavior: as the pressure increased for an isothermal system, the solubility 

increased. 
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Figure 6.8. Solubility and Cloud Point Data for the Ternary System 

Chitosan-DMSO-CO2 at 35 C (308 K). 

 

6.4. Encapsulation Experiments 

The static and dynamic solubility data obtained for the ternary system, helped 

establish that the pressure and temperature operation conditions for the encapsulation 

process were 92-156 bar and 308-318 K respectively. 

The encapsulation set-up was built with off-the-shelf equipment, which makes it 

affordable and in this particular case we were able to build a system with a visualization 

window. This window made it possible to follow the encapsulation process, since the 

fluidization model for this ternary system was not available. In this particular experiment, 

the limitations were temperatures on the encapsulation cell no higher than 50 C (323 K) 

(to avoid the polymerization of the Chitosan in the lines) and pressures no higher than 

130 bar (to avoid leaks on the encapsulation cell). 
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The materials to be encapsulated were titanium dioxide (TiO2) and calcium oxide 

(CaO), and they are insoluble in DMSO. Figure 6.9 shows a diagram of the operation 

conditions during the encapsulation process. 

Several encapsulation experiments were performed in the pressure range of 110-

120 bars and a temperature range of 41-50 C (314-323 K), using different contact 

periods and particles (CaO and TiO2). Figure 6.9 describes graphically the encapsulation 

process step by step, considering each factor separately: pressure, temperature and carbon 

dioxide flow rate as a function of time. As shown in these diagrams, when the particles 

were getting covered by the encapsulants, all the conditions were kept constant in order 

to achieve a better coverage, followed by a temperature increase, which caused further 

Chitosan precipitation. For the given pressure range, temperature increase reduced 

Chitosan solubility and subsequently period allowed removal of DMSO in the system. 

In an effort to show the effect of each of the operation conditions by itself, three 

plots are presented: Figure 6.10 (coating thickness as a function of pressure), Figure 6.11 

(coating thickness as a function of temperature) and Figure 6.12 (coating thickness as a 

function of process time). At first glance these plots might cause some confusion, 

because of the complexity of the behavior shown. However, going back to the definition 

of solubility under supercritical conditions, it is obvious that these plots confirm the fact 

that solubility is a function of density and for this reason pressure and temperature effect 

cannot be analyzed independently. 
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Figure 6.9. Coating Process Diagram.  
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The thickness of the encapsulant material deposited over the particles was given 

by a combination of factors: feed composition (DMSO-Chitosan), chemical composition 

of the mixture (Chitosan-DMSO-CO2) in the cell, pressure, temperature and processing 

time.  This means that even having the same feed composition, the thickness of the 

polymer deposited over the core material changed depending on the operation conditions 

(Appendix I). 

Results presented in Figure 6.10 show that when pressure was raised at constant 

temperature, the coating thickness increased and coverage improved, which was a logical 

consequence of solubility enhancement.  
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Figure 6.10. Coating Thickness as a Function of Cell Pressure 
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As the temperature increased at constant pressure the solubility of the polymer 

decreased, causing its rapid precipitation which was desirable, since this encapsulation 

method was based on temperature perturbation (Figure 6.11). However, if not controlled, 

the polymer precipitated too fast, producing agglomeration and a poor encapsulation 

process.  
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Figure 6.11. Coating Thickness as a Function of Cell Temperature. 

 

Comparing Figures 6.10 and 6.11, it can be observed that the highest thickness 

was obtained for the combination high pressure-low temperature (120bar, 42ºC), which 

was the condition that enhanced solubility and consequently promoted better 

encapsulation.  

The other factor considered in this encapsulation process was the process time, 

including precipitation and extraction of DMSO, as presented in Figure 6.12. 
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We would expect to get higher thickness for longer contact time, but as explained 

previously, solubility is a function of density, and as shown in detail in Figure 6.12, the 

lower thickness corresponds to a point with highest contact time at 120 bar and 42ºC, 

which could be an indication that the coating material was re-dissolved in the DMSO-

CO2 mixture and removed. 
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Figure 6.12. Coating Thickness as a Function of Process Time. 

 

Table 6.8 includes all experimental conditions that resulted in encapsulated 

particles. When the contact period was 20 min or less, there was no conclusive 

information to affirm that any encapsulation was performed.  
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After micro-encapsulation, each sample was characterized. To establish the 

presence of Chitosan on the processed sample, FTIR was used. The concentration of each 

element in the sample was determined with the EDS.  SEM was used to obtain the 

particle size distribution, the coating thickness was measured with TEM and finally the 

coating morphology was evaluated with AFM. 

 

Table 6.8. Coating Experiments Chitosan-DMSO-Core Material 

Core 

Material 
P (bar) T( C) 

Contact 

Time (min) 

Thickness* 

( m) 

CaO 
111.0 48.6 Low pressure (12h) 0.0254 

CaO 
119.0 41.9 50 0.0528 

CaO 
119.8 44.8 45 0.1420 

TiO2 110.0 44.0 73 0.0265 

TiO2 120.0 45.0 60 0.0368 

*These are average values, for 8-24 samples per experiment. 

 

Figure 6.13 depicts FTIR results of transmittances of CaO samples before and 

after the encapsulation process. The plot in black (above) represents the CaO before 

coating and the only peaks observed correspond to traces of elements present on the 

quicklime sample: 875.99 cm
-1

 (SiO2), 1432.41 cm
-1

 (Sulfate), 3676.53cm
-1

  (OH 

probably Ca-OH), which is caused by moisture exposure of the sample.  
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Figure 6.13. FTIR CaO Before Coating (Above),  

CaO-Chitosan After Processing (Below). 

 

The plot in red (below) represents the CaO coated with Chitosan, where the 

absorbance peaks obtained were compared with some published data available (Rout 

2001, Cardenas 2004). The NH2 deformations are in the range 1559-1583 cm
-1

, C=O 

bond 1646-1655 cm
-1

, C-H 2920-2945 cm
-1

 and N-H 3366-3450 cm
-1

, similar to the ones 

found in literature reviewed.  

These results confirm the Chitosan was precipitated during the encapsulation 

process, but do not necessarily prove its presence as an encapsulant. The same analysis 

was performed on all the TiO2 and CaO samples, to verify the presence of Chitosan 

before proceeding with further analysis.   

The next set of analyses performed was Energy Dispersive Spectroscopy (EDS)  

to determine the weight percentage of each chemical elements present in the samples 
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after the coating process, in order to compare these values with the weight percentages of 

the same elements in the feed. In Tables 6.9 and 6.10 Calcium (Ca) was used for calcium 

oxide (CaO), Nitrogen (N) was used for Chitosan (C12H24N2O9)n, sulfur (S) was used for 

DMSO (C2H6OS), titanium (Ti) was used for titanium dioxide (TiO2), and oxygen (O) 

was used as a reference element to validate the accuracy of the EDS analysis.  The 

difference (percentage basis) between the two values are presented in the last column on 

both tables.  

 

Table 6.9. Feed Mass Balance vs SEM-EDS Analysis for Processed CaO Samples 

Material 
 

Feed Mass Balance 

(Weight %) 

SEM-EDS 

(Weight %) 

Dif. 

(Oxygen) 

 Ca N O  Ca N O S % 

CaO, Chitosan, DMSO* 
70.72 0.09 28.68 61.03 3.46 27.78 0.60 3.14 

CaO, Chitosan, DMSO 
67.39 0.49 29.21 60.10 3.50 28.95 0.64 0.89 

CaO, Chitosan, DMSO 
42.64 3.51 33.13 31.82 2.24 34.82 0.27 -1.74 

CaO, Chitosan, DMSO 
48.26 2.83 32.24 40.80 3.96 33.40 0.72 -0.82 

CaO, Chitosan, DMSO 
35.72 4.36 34.23 28.83 4.01 31.90 1.31 1.05 

       * This experiment did not produce encapsulated particles 

 

 

Table 6.10. Feed Mass Balance vs SEM-EDS Analysis for Processed TiO2 Samples 

Material 
 

Feed Mass Balance 

(Weight %) 

SEM-EDS 

(Weight %) 

Dif. 

(Oxygen) 

 Ti N %  Ti N O S % 

TiO2, Chitosan, DMSO 
41.34 2.71 39.00 37.5 4.03 38.93 0.39 0.19 

TiO2, Chitosan, DMSO 
29.24 4.47 38.68 20.28 7.86 38.98 0.31 -0.78 

 

Visually it was easy to determine the presence of Chitosan in the processed 

samples just by observing the yellowish color of the dry powder, and SEM-EDS results 
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confirmed the presence of Chitosan and DMSO in the processed samples (the last one 

(DMSO) in very small amounts), verifying that it was extracted with the supercritical 

CO2 from the encapsulation cell. Another result obtained by using the SEM-EDS analysis 

is that even when the samples presented a yellowish color and no encapsulation was 

produced, having a higher percentage of N for the processed samples compared to the 

feed calculations was an indication of a high concentration of Chitosan. This particular 

sample was analyzed with TEM (Figure 6.14).  

 

 

Figure 6.14. CaO-Chitosan TEM Image.   

 

However, again these results were not conclusive, since the Chitosan could be 

present as coating or simply as precipitated material, and for this reason TEM and AFM 

analysis were required. 

One of the characterization techniques employed to estimate the particle sizes 

(before and after the encapsulation process) and the coating thickness was a Scanning 

Electron Microscopy (SEM). This SEM system (Hitachi 800) has a feature that allows 

users to analyze a group of particles, reporting the total number of particles in the picture 

and the estimated diameter for each of them. Therefore, pictures of the samples were 
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taken before and after the coating, with particle populations in the order of hundreds, 

establishing a particle size distribution for coated and uncoated CaO and TiO2. 

These results were essential in order to establish how the particle size was 

affected by the coating process and how significant the TEM results were. These results 

are summarized on Table 6.11, and the particle size distribution plots for the coated and 

uncoated CaO and TiO2 are shown in Figures 6.15 through 6.18. 

 

Table 6.11. Average Particle Size from SEM Analysis. 
Particle # Measurements DoAverage ( m) 

Uncoated TiO2 957 0.39 

Coated TiO2 543 0.40 

Coated CaO 477 0.20 

Uncoated CaO 806 0.25 

 

The results obtained from the particle size distribution does not show much 

difference between the particle before and after processing.  This indicates that the 

coating thickness is on the nanometer order, which is confirmed by the TEM data as well.  
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Figure 6.15. Particle Size Distribution for Uncoated CaO. (806 data points). 
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(b)

0

5

10

15

20

25

30

35

40

45

0.
06

0.
09

0.
12

0.
15

0.
18

0.
22

0.
26

0.
29

0.
36 0.

4
0.

48
0.

51
0.

55
0.

59
0.

64
0.

71
0.

89
1.

11
1.

18
1.

45
1.

74
1.

86
2.

76
4.

16

Particle Diameter (micron)

P
S

D
 (

%
)

Coated CaO
  

Figure 6.16. Particle Size Distribution for Encapsulated CaO. (477 data points). 
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Figure 6.17. Particle Size Distribution for Uncoated TiO2. (957 data points). 
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(b)

0

2

4

6

8

10

12

14

0.
13 0.

2
0.

25 0.
3

0.
35 0.

4
0.

45 0.
5

0.
56

0.
64

0.
69

0.
74

0.
83 0.

9
0.

99
1.

07
1.

22
1.

34
1.

48
1.

85
2.

39
3.

37

Particle Diameter (micron)

P
S

D
 (

%
)

Coated TiO
 

Figure 6.18. Particle Size Distribution for Encapsulated TiO2. (543 data points). 

 

Another factor that had to be considered with the SEM was that samples 

contained encapsulated, non-encapsulated and polymer particles. Therefore, precise 

particle size and coating thickness required TEM analysis of the particles. 

TEM analysis of the processed CaO and TiO2 samples confirmed the fact that the 

particles were encapsulated, providing the shape of the encapsulated particles and the 

coating thickness. Transmission electron microscopy (TEM) is an imaging technique 

whereby a beam of electrons is transmitted through a specimen, then an image is formed, 

magnified and directed to appear on a CCD camera (CCDs are used in digital 

photography). The materials interact with the electron beam and the intensity of the 

transmitted beam is affected by the volume and density of the material through which it 

passes, for this reason in the following pictures it is possible to distinguish between the 
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dark solid dense core made of inorganic material, CaO or TiO2, and the organic polymer 

coating that is almost transparent to the electron beam. 

 

  

(a) (b) 

Figure 6.19. TEM for Chitosan Encapsulated Particle. 

(a) CaO Particles, (b) TiO2 Particles. 

 

Using several pictures taken for each of the processed samples, similar to the ones 

shown in Figure 6.19, average information about particle size and coating thickness were 

obtained and presented in Tables 6.12 and 6.13. The external diameter (Do) and internal 

diameter (Di) were calculated from measurements done by using Microsoft Office Visio 

2003 when analyzing the digital TEM images for each particle.  The bold numbers in 

each column represent the average values. 

 The experimental data showed that pressure, temperature and contact time are 

related:  when pressure increased, the coating thickness and coverage increased as a 

logical consequence of solubility enhancement. As the temperature increased, the 

solubility of the polymer decreased, causing its rapid precipitation.  This was desirable, 
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since this encapsulation method was based on temperature perturbation, but if not 

controlled the polymer precipitated too fast and there was not enough time for the 

supercritical mixture to be absorbed over the particles‟ surface, producing agglomeration 

and a poor encapsulation process. The other factor considered in this encapsulation 

process was the contact time.  In theory, the longer the exposure or contact time, the 

thicker the coating should be, but the experimental results did not back up this premise.  

One encapsulation test where the CaO particles were stirred overnight at room 

temperature in the liquid mixture Chitosan-DMSO and then pressurized at 111 bar and 

48.6ºC for 120 min was the experiment that showed the thinner coating and the inferior 

coverage.  
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Table 6.12. TEM Thickness Measurements for Encapsulated CaO Particles. 

Do ( m) Di ( m) 
Thickness 

( m) 

P 

(bar) 

T 

( C) 

Contact 

Time (min) 

2.2208 1.3839 0.4185 120 45 45 

0.5132 0.4095 0.0519 120 45 45 

0.1736 0.1410 0.0163 120 45 45 

1.3670 0.8970 0.2350 120 45 45 

0.3430 0.2750 0.0340 120 45 45 

0.9690 0.6450 0.1620 120 45 45 

2.1648 1.8734 0.1457 120 45 45 

0.3100 0.1650 0.0725 120 45 45 

1.0077 0.7237 0.1420 120 45 45 

0.2045 0.1372 0.0337 109 42 50 

0.3577 0.1925 0.0826 109 42 50 

0.2621 0.1376 0.0623 109 42 50 

0.1193 0.0770 0.0212 109 42 50 

0.1236 0.0817 0.0210 109 42 50 

0.2464 0.1429 0.0518 109 42 50 

0.2510 0.1019 0.0746 109 42 50 

0.2862 0.1349 0.0757 109 42 50 

0.2314 0.1257 0.0528 109 42 50 

0.1725 0.0971 0.0377 111 49 30* 

0.1081 0.0806 0.0138 111 49 30* 

0.1639 0.1156 0.0242 111 49 30* 

0.1400 0.0890 0.0255 111 49 30* 

0.1360 0.0980 0.0190 111 49 30* 

0.1480 0.0950 0.0265 111 49 30* 

0.1682 0.1064 0.0309 111 49 30* 

0.1480 0.0970 0.0255 111 49 30* 

0.1481 0.0973 0.0254 111 49 30* 

*The system chitosan-DMSO-CaO was kept at room conditions 

for 12h with constant stirring before pressurization for 30 min. 
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Table 6.13. TEM Thickness Measurements for Encapsulated TiO2 Particles. 

Do ( m) Di ( m) 
Thickness 

( m) 

P 

(bar) 

T 

( C) 

Contact 

Time (min) 

0.1513 0.1371 0.0071 120 45 60 

0.1531 0.1424 0.0054 120 45 60 

0.3329 0.2472 0.0429 120 45 60 

0.5143 0.3434 0.0855 120 45 60 

0.2694 0.1220 0.0737 120 45 60 

0.1153 0.1048 0.0053 120 45 60 

0.1520 0.1400 0.0060 120 45 60 

0.2430 0.1950 0.0240 120 45 60 

0.4240 0.2950 0.0645 120 45 60 

0.3920 0.2330 0.0795 120 45 60 

0.1920 0.1130 0.0395 120 45 60 

0.1340 0.1220 0.0060 120 45 60 

0.1980 0.1680 0.0150 120 45 60 

0.3340 0.2450 0.0445 120 45 60 

0.4080 0.2640 0.0720 120 45 60 

0.2920 0.1730 0.0595 120 45 60 

0.1630 0.1180 0.0225 120 45 60 

0.1660 0.1450 0.0105 120 45 60 

0.2575 0.1838 0.0368 120 45 60 

0.1343 0.1067 0.0138 110 44 73 

0.1060 0.0512 0.0274 110 44 73 

0.1450 0.1242 0.0104 110 44 73 

0.1202 0.0546 0.0328 110 44 73 

0.1500 0.1260 0.0120 110 44 73 

0.1200 0.0790 0.0205 110 44 73 

0.1260 0.0880 0.0190 110 44 73 

0.1330 0.1220 0.0055 110 44 73 

0.1430 0.1250 0.0090 110 44 73 

0.1440 0.0970 0.0235 110 44 73 

0.1490 0.1300 0.0095 110 44 73 

0.2190 0.1860 0.0165 110 44 73 

0.2390 0.1990 0.0200 110 44 73 

0.3300 0.2340 0.0480 110 44 73 

0.3170 0.1730 0.0720 110 44 73 

0.1950 0.1730 0.0110 110 44 73 

0.2690 0.1420 0.0635 110 44 73 

0.1390 0.1030 0.0180 110 44 73 

0.2750 0.1730 0.0510 110 44 73 

0.2340 0.1390 0.0475 110 44 73 

0.184 0.131 0.027 110 44 73 

 

Once demonstrated by TEM results that the particles were coated and an average 

coating thickness was estimated, the next step was to study the morphology of the 

coating, and this was obtained from AFM.  The atomic force microscope (AFM) is a 
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high-resolution type of scanning probe microscope (the term 'microscope' in the name is 

actually a misnomer because it implies looking, while in fact the information is gathered 

by "feeling" the surface with a mechanical probe). The AFM is one of the foremost tools 

for imaging, measuring and manipulating matter at the nanoscale.  

This analysis technique was chosen because AFM provides a true three-

dimensional surface profile.  Additionally, samples viewed by AFM do not require any 

special treatments (such as metal/carbon coatings on SEM) that in this case would 

irreversibly change the sample, making it impossible to study the true morphology of the 

coating material. 

In Figures 6.20 and 6.21, the roughness of uncoated and coated CaO particles 

sample are compared, showing that once coated, the particle surface is smoother, with 

roughness changing from 34.548 nm for the uncoated CaO particle to 2.660 nm for the 

encapsulated particle. 

Figures 6.22 and 6.23 (Height and Phase) for the uncoated and encapsulated CaO 

particles, are another evidence of the encapsulating process, since the uncoated particles 

present a crystal shape structure and the encapsulated ones have a rounded coated shape, 

confirming the results obtained by the TEM, where complete encapsulated particles were 

found. The Section Analysis presented in Figures 6.24 and 6.25 show particles with 

diameters of less than one micron, confirming the particle sizes obtained with TEM and 

SEM, as well as differentiating the external angular crystal shape of the uncoated 

particles and the rounded surface of the coated ones.  



www.manaraa.com

 

 144 

 

Figure 6.20. Uncoated CaO Roughness Analysis.       

 

 

 

Figure 6.21. Coated CaO Roughness Analysis.  
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Figure 6.22. Uncoated CaO Height and Phase.   

 

 

 

 

  

Figure 6.23. Coated CaO Height and Phase.  
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Figure 6.24. Uncoated CaO Section Analysis.       

 

 

 

 

Figure 6.25. Coated CaO Section Analysis. 
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6.5. Coating Analysis and Characterization 

 As mentioned previously, there is no analytical data published about this 

particular Chitosan Oligosaccharide Lactate; for this reason some characterization was 

needed.  In order to determine if the encapsulating process was causing some changes to 

the polymer, all analytical tests were performed before and after processing. 

FTIR analyses were performed to four Chitosan samples of different molecular 

weights and the Oligosaccharide Lactate before and after the encapsulating process, to 

determine if there were any changes on polymer. Figure 6.26 shows that all the plots are 

similar, confirming that all the Chitosan peaks were present before and after the 

encapsulation process.  
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Figure 6.26. FTIR Plot for Chitosan Oligosaccharide Lactate. (OL Sigma). 

Before and after processing is shown, as well as Chitosan Low Molecular Weight (LMW) 

and Medium Molecular Weight (MMW). 
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The -NH deformations were in the 1600 cm
-1

 (1539 cm
-1

 amine and 1635 cm
-1

  

amide) range.  The -CO band was at 1074 cm
-1

, stretching deformation -CH was at 

2920-2945 cm
-1

, -OH was at 3435 cm
-1

, and -CN was at 1153 cm
-1

.  These were all 

similar to the ones found in the literature reviewed (Cardenas 2004, Jang 2003 and Zhou 

2002). 

The only difference observed was that the processed Oligosaccharide Lactate 

spectrum had two peaks seeming to be stronger, one at 3435 cm
-1

, that corresponded to -

OH deformations, which could be an indication of some water absorbed in the Chitosan; 

and the other one was around 1060cm
-1

, for the sulfoxide group, indicating that some 

DMSO remained absorbed in the polymer.  However this peak overlapped with the -CO 

band at 1074 cm
-1

 and -CN at 1153 cm
-1

. 

Using another analysis method, a DSC-TGA device was used to characterize the 

polymers, by measuring both heat flow and weight changes in a material as a function of 

temperature on time in a controlled atmosphere.  This is a very useful technique because 

the information obtained allows differentiation between endothermic and exothermic 

events which have no associated weight loss (e.g. melting, crystallization, glass 

transition) and those which involve a weight loss (e.g. degradation). 

In Figure 6.27, a DSC-TGA for Chitosan Oligosaccharide Lactate before 

processing is shown, where a phase change or glass transition temperature was observed 

at 106.1 C (no weight loss) and decomposition was seen at 148.96 C accompanied by a 

weight loss of 21.16%. Glass transition temperatures have been reported by Y. Dong 

2004 for higher molecular weights Chitosans (450,000 Da) around 130-150 C, but no 
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data was found for Chitosan Oligosaccharide Lactate. Not even the provider (Sigma 

Aldrich) had this data available in order to compare the results. 

Figure 6.28 shows a DSC-TGA for the processed Chitosan Oligosaccharide 

Lactate, where decomposition at 125.8 C accompanied by a weight loss of 49.92% was 

observed. These results indicate that the original polymer was more stable and this is 

probably a consequence of the water and DMSO absorbed by the Chitosan during 

processing or manipulation, as indicated by the FTIR (increase of -OH 3435 cm
-1

 peak) 

and the NMR tests presented next, and confirmed by studies done by Ratajska on water 

soluble Chitosan. 

 

Figure 6.27. DSC-TGA for Chitosan Oligosaccharide Lactate.        
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Figure 6.28. DSC-TGA for Processed Chitosan Oligosaccharide Lactate.   

 

From a theoretical proton NMR of the monomer made in ChemDraw from 

CambridgeSoft, which is generally a good estimate, we can see the expected peaks in 

Figure 6.29. 
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Figure 6.29. Proton NMR for Chitosan Monomer (ChemDraw).  

 

The NMR done at Inova-400 (Figure 6.30) looks pretty well resolved for the 

peaks of the pure Chitosan Oligosaccharide Lactate, if compared with the NMR of the 

monomer made with ChemDraw. The DMSO peak came around 2.5-2.62 ppm. In 

addition, there was always water absorbed by the DMSO and it appeared around 3.3 ppm.  

In Figure 6.31, a Proton NMR of the processed Chitosan Oligosaccharide Lactate 

is presented and it can be seen is that, although almost all DMSO was extracted from the 

sample (SEM-EDS data), there was still some DMSO present. Also, the large peak 
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between 2-3 ppm was residual DMSO and the other large peak between 3-4 ppm was 

water, probably absorbed from the environment, since the sample and DMSO are highly 

hygroscopic.  This caused some of the peaks shifting to 5-6 ppm and the rest of the peaks 

were buried under DMSO and water peaks, since the encapsulation process described did 

not change the chemical structure of the polymer. 

 

 

Figure 6.30. Proton NMR Pure Chitosan Oligosaccharide Lactate. 
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Figure 6.31. Proton NMR Processed Chitosan Oligosaccharide Lactate. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

Chitosan Oligosaccharide Lactate is a relatively new biopolymer with a low 

molecular weight (5000Da), when compared with the other members of the Chitosan 

family where the molecular weight ranges 50,000 to 375,000 Da. This specific 

characteristic makes Chitosan Oligosaccharide Lactate soluble at regular mucus pH 6.5, 

showing potential application in the pharmaceutical and food industries. What was found 

during this research is that it is not soluble on DCM, chloroform, acetone, ethanol or pure 

supercritical CO2, but it is highly soluble in water and DMSO. DMSO, being readily 

accepted for targeted delivery, can be used as a cosolvent in supercritical procedures.  

The main objective of this research was to perform the encapsulation of fine dry 

powders using supercritical CO2.  This necessitated basic information on phase behavior 

and solubility for the system DMSO-CO2. The experimental effort to date had focused on 

high DMSO concentrations used for antisolvent procedures with limited use for DMSO 

as a cosolvent in encapsulation procedures. Cloud point data was generated for the 

system DMSO-CO2 in a temperature range of 314.2 K to 328.2 K and pressures from 

89 to 133.5 bars and DMSO molar fractions between 5 to 10%. The standard deviation 

based on the five readings made for each data point is less than one bar, indicating that 

this experimental method is accurate. The results that were obtained line up with existent 

literature data reported by Rajasingam 2004, Gonzalez 2002 and Kordikowski 1995, 
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observing some variations (  4 bar) that can be attributed to the different experimental 

methods designed to work with DMSO concentrations over 10% molar basis. 

Chitosan-DMSO-CO2 cloud point and solubility data was generated in a 

temperature range of 308.2 K to 318.2 K and pressures from 92.4 to 156.7 bars with a 

standard deviation for each data point of less than one bar. This is an important 

contribution from this research, since there was previously no information available for 

this system.  Furthermore, as is well known, modeling the behavior of a supercritical 

mixture including a polymer is exceedingly difficult, since polymers are substances 

composed of many single molecules or repeating units (monomers) connected by 

covalent chemical bonds, interacting among themselves and the solvents used at 

supercritical conditions.  

From the solubility experiments, it can be stated that at isothermal conditions the 

Chitosan solubility increases proportionally with the pressure; and at constant pressure 

the solubility decreases with temperature increments. This is a general effect that is 

suitable to the short-range attractive forces between solvent and solute. The solubility of a 

low-volatile solute, like Chitosan, is enhanced as the density of the volatile solvent (CO2) 

increases, as a consequence of temperature drop in an isobaric process or pressure rise in 

an isothermal process.  

The fact that DMSO solubility in supercritical CO2 is high compared to the 

solubility of Chitosan Oligosaccharide Lactate in SCCO2 was the reason to try a 

temperature change at isobaric conditions to disrupt the equilibrium of this ternary 

system. The experimental work performed establishes that by increasing the temperature 

at constant pressure, the solubility of the Chitosan decreases, causing it to precipitate over 
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the particles that need to be encapsulated while the DMSO stays solubilized in the 

SCCO2. 

Fluidization of CaO and TiO2 particles with diameters under one micron was 

achieved in a mini fluidized bed (volume = 60 ml) with SCCO2. The average CO2 mass 

flow used to fluidize these particles was 2 to 5g/min, calculated with Wen & Yu 1966, as 

recommended by Carsten Vogt, 2005. 

The performance of this encapsulation method for dry powders particles was 

proved by encapsulating calcium oxide (CaO, non porous) and titanium dioxide (TiO2, 

porous) particles with diameters under one micron using Chitosan Oligosaccharide 

Lactate. 

This research confirms FTIR and EDS as valuable techniques to verify the 

presence of Chitosan in the encapsulated particle and also shows that almost all DMSO 

was removed during extraction. TEM analysis provided visual confirmation that CaO and 

TiO2 particles of 1 micron or less were encapsulated with a thickness of 5 nm or less, and 

these results coincided with SEM and AFM analysis.  

The experimental data obtained validates the fact that solubility is a function of 

pressure and temperature. Pressure increments at constant temperature cause coating 

thickness augmentation and coverage improvement as a logical consequence of solubility 

enhancement. On the other hand, temperature increments diminish the solubility of the 

polymer, causing its rapid precipitation, which is desirable since this encapsulation 

method is based on temperature perturbation.  However, when not controlled the polymer 

precipitates too fast, and if contact time was not enough for the supercritical mix to get 

adsorbed over the particles, it results in surface agglomeration and a poor encapsulation.  
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SEM samples of 477 to more than 900 particles provided a particle size 

distribution, where more than 90% of the CaO and TiO2 particles had been confirmed to 

have a diameter under one micron. 

AFM showed particle roughness of 2-4 nm for the encapsulated sample and 36 to 

46 nm or higher for uncoated ones, proving the particles were encapsulated, since the 

surface is smoother after the coating is applied, also the uncoated particles presented a 

crystal angular shape structure when compared to the encapsulated ones with a rounded 

shape.  

FTIR analyses were performed on four Chitosan samples of different molecular 

weights and the Oligosaccharide Lactate before and after the encapsulating process.  All 

the plots are similar, confirming the presence of Chitosan before and after the 

encapsulation process.  The only difference observed is that the processed 

Oligosaccharide Lactate spectrum has two peaks seeming to be stronger, one at 3435cm
-1

, 

that corresponds to -OH deformations (which can be an indication of some water 

absorbed in the Chitosan) and the other one at around 1060cm
-1

 for the sulfoxide group 

(indicating that some DMSO remains absorbed in the polymer).  However, this peak 

overlaps with the -CO band at 1074 cm
-1

 and -CN at 1153 cm
-1

. 

DSC-TGA analysis performed on Chitosan Oligosaccharide Lactate indicates that 

the original polymer appears to be more thermally stable and this is probably a 

consequence of the water adsorbed by the Chitosan during or after processing, as 

confirmed by the NMR tests. DSC-TGA for Chitosan Oligosaccharide Lactate before 

processing shows a phase change or glass transition temperature at 106.1 C (no weight 

loss) and decomposition at 148.96 C, accompanied by a weight loss of 21.16%, while 
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processed Chitosan Oligosaccharide Lactate had decomposition at 125.8 C, 

accompanied by a weight loss of 49.92%. 

In conclusion, the solubility data and encapsulation results obtained from this 

research are valuable as new information.  This new data can be the starting point for 

many other research works, including experimental and modeling. It was proven 

experimentally that Chitosan Oligosaccharide Lactate can be solubilized in supercritical 

carbon dioxide using DMSO as a cosolvent (5-10%) at temperatures between 308.2 K to 

318.2 K and pressures from 92.4 to 156.7 bars.  This information was used to coat CaO 

and TiO2 particles (0.2-2 m) at 92-156 bar and 308-318 K, using a temperature 

perturbation technique in a fluidized bed. 

The mass balance presented in Appendix I indicates that the solubility decreases 

inside the encapsulation cell, as the temperature was raised at a constant pressure to 

promote the polymer precipitation. The results from Tables I.3 and I.4 indicate that the 

volume of SCCO2 used to remove DMSO was higher than required, which could cause 

Chitosan removal, reducing encapsulant thickness.  

The results obtained during this experimental research work are encouraging and 

for this reason some improvements are recommended for future work. In order to obtain 

more experimental data in less time from the dynamic solubility set-up, it would be 

useful to have the solubility cell and the mixer enclosed in an oven instead of the water 

bath, as well as having a densitometer connected to the extraction cell. 

The encapsulation cell used was a modified Jerguson gauge, which included some 

Teflon baffles especially designed to avoid disruption of the flow profile. These inserts 

had to be readjusted after every single experiment, taking at least eight hours before the 
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cell could be operated again.  For this reason, redesigning and building the body of the 

cell as one solid piece should be considered, as well as an easy opening and closing 

system. Having a full body Safire cell on the solubility set-up would make it possible to 

obtain all the phase transitions for multi-component mixtures, facilitating future modeling 

attempts for this and other supercritical systems. 

Due to the hygroscopic nature of Chitosan Oligosaccharide Lactate, some 

agglomeration could be attributed to moisture pick-up over time; for future experiments it 

is recommended to store samples in absolute dry conditions. 
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Appendix A. Supercritical Encapsulation Techniques Literature  

Reference Process 

Particle Size 

(μm) 

Coating 

Solubility 

Core 

Solubility 
Comments 

Bleich J., 1996 ASES <50 No No 

- SCCO2 

- Core particles: hyoscine butylbromide, indomethacin, piroxican 

and thymopentin. 

- Coating material:  PLA. 

- Particle size: 10-90 μm. 

Chapttopadhyay P., 

2005 
SFEE 0.2-1 No No 

- SCCO2 

- Core particles: indomethacin and ketoprofen. 

- Coating material: Eudagrid and PLA. 

- Continuous and batch process by supercritical carbon dioxide 

extraction of oil in water (o/w) emulsions. 

- Final particle size 200 and 1000 nm. 

Elva1ssore Nicola, 

2001 
SAS 0.5-2 No No 

- SCCO2 

- Core particles: insulin. 

- Coating material:  PLA 

- Cosolvents: DCM, DMSO. 

- Particle size: 0.5 to 2 μm. 

Falk Rick, 1997 PCA 0.2-1 No No 

- SCCO2 

- Core particles: Gentamycin, naloxone, and naltrexone. 

- Coating material: PLA. 

- Hydrophobic ion pairing (HIP) technique was used. 

- Particle size: 0.2-1.0 m. 

 

Glebov Evgeni M., 

2001 

RESS 

 
20 Yes No 

- SCCO2 

- Core particles: Al, Mg powders (20 μm). 

- Coating material: poly(vinylidene fluoride) and poly(4-

vinylbiphenyl) (PVB) were used. 

- Average thicknesses of the films deposited on metal powders 

were in the range of 1-30 nm. 



www.manaraa.com

 

 171 

Appendix A (Continued) 

Reference Process 

Particle Size 

(μm) 

Coating 

Solubility 

Core 

Solubility 
Comments 

Hertz Audrey, 

2006 

RESS, 

Polymerization 
0.03-0.3 Yes No 

- SCCO2 

- The core material: YSZ particles. 

- Coating material MMA and PMMA. 

- PDMS-g-PA was used as surfactant. 

Kim Jong-Hyun, 

1996 
RESS 10-90 Yes Yes 

- SCCO2 

- Core particles: naproxen. 

- Coating material: poly-(L-lactic acid) (L-PLA). 

- Particle size: 10-90 μm. 

- Agglomeration was constant in almost all the experiments. 

Kröber H, 2005 RESS 7.39-124.6 Yes No 

- SCCO2. 

- Glass beads were coated with stearyl alcohol. 

- Smooth coating, thickness 1-8 m. 

- Coated particle size range is 70-125 m. 

Matsuyama 

Kiyoshi, 2003 
RESS-N 14.6 Yes No 

- SCCO2 

- Core material: p-acetamidophenol, acetylsalicylic acid, 

1,3-dimethylxanthine, flavone, and 3-hydroxyflavone. 

- Coating material PEG, PMMA, PLA, PGLA and PPG-

PEG. 

Mishima Kenji, 

2000 
RESS-N 6-62 Yes No 

- SCCO2 

- Core material: lysozyme (24 m) and lipase (19 m). 

- Coating material PEG, PMMA, PLA, PGLA and PPG-

PEG. 

Pessey V., 2000 SCF- Reaction 2-3 Yes No 

- SCCO2 

- Core particles: Ni (3 m) and SmCo5 (10 m) 

- Coating: Cu 

- The thickness on Ni gave values from 0.2 to 1 m. 
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Appendix A (Continued) 

Reference Process 

Particle Size 

(μm) 

Coating 

Solubility 

Core 

Solubility 
Comments 

Ribeiro Dos 

Santos, 2002 

Gradual P-T 

drop 
125-500 Yes No 

- SCCO2. 

- BSA microparticles coated with Gelucire 50/02 or Dynasan 

114. 

- Dynasan 114 crystallizes, was not a good coating. 

- Coating was not perfectly uniform. 

- Coated particle size range is 543 m. 

 

Sun Ya-Ping, 1998 
RESS 

 
0.0033 Yes No 

- SCNH3 

- Core particles: cadmium sulfide (33 Å) 

- Coating material: Poly(N-vinyl-2-pyrrolidone). 

 

Sunol A.K, 1998 T antisolvent 30-500 Yes No 

- SCCO2 

- Core particles: sodium chloride (30-500 μm) and 

ammonium nitrate. 

- Coating material: HTPB. 

- Film thicknesses as low as 0.2 micron. 

 

Thies C., 2003 
Gradual P-T 

drop 
500 Yes No 

- SCCO2. 

- BSA crystals and sugar spheres as core particles coated with 

Gelucire 50/02 and Trimyristin. 

- Trimyristin crystallizes, was not a good coating. 

- Insoluble biomolecules less prone to denaturizing in process 

like this. 

- Coated particle size range is 500 m. 

Tsutsumi Atsushi, 

1995 
RESS 55.6 Yes No 

- SCCO2. 

- Spherical catalyst particles were coated with paraffin. 

- Average particle size 56 μm. 

- Coating thickness below 0.5 m. 



www.manaraa.com

 

 173 

Appendix A (Continued) 

Reference Process 

Particle Size 

(μm) 

Coating 

Solubility 

Core 

Solubility 
Comments 

Tsutsumi Atsushi, 

2003 

RESS, 

Impinging 
0.02-1 Yes No 

- SCCO2 

- Core particles: silica particles (1μm) and titanium dioxide (20 

nm) were used. 

- Coating material was paraffin. 

- Thickness of the paraffin layer was around 50–60 nm. 

Wang Ting-Jie, 

2001 
RESS 130 Yes No 

- SCCO2, paraffin was used as a binder. 

- Fine particles of SiO2 (d= 1μm) as coating material and glass 

beads as core particle (d=130 μm). 

Wang Yulu, 2002 RESS 315-500 Yes No 

- SCCO2. 

- PVCVA and HPC were used as coating. 

- The host particles were glass beads, 315 and 500 m. 

- The average coating thickness was about 0.8 μm, some 

agglomeration and uneven coating was observed. 

Wang Yulu, 2004 SAS 
0.016, 0.020, 

0.6 
No No 

- SCCO2 

- Core particles: silica nanoparticles (hydrophobic and 

hydrophilic). 

- Coating material: Eudragit. 

- Coated particle: 600 nm. 

- Coating thickness: 75 nm. 

Wang Yulu, 2005 SAS 0.5 No No 

- SCCO2 

- Core particles: silica particles (0.5 μm) 

- Coating material: PLGA. 

Young Timothy 

J., 1999 
PCA 5-70 No No 

- SCCO2 

- Core particles: Lysozyme (1-10 μm). 

- Coating material was l-PLA or PGLA. 

- Particle size: 5- 70 μm. 
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Appendix A (Continued) 

Reference Process 

Particle Size 

(μm) 

Coating 

Solubility 

Core 

Solubility 
Comments 

Yuea Baohua, 

2004 

Dispersion 

polymerization 
12 Yes No 

- SC CO2. 

- DCR particles were encapsulated with PMMA 

and PVP. 

- Useful when a monomer can be used as a 

cosolvent. 

- Valuable to make small particles, 12 m. 

- Minor particle agglomeration. 

 

 

 

BSA: Bovine serum albumin 

CdS: cadmium sulfide 

CF3COCH=C(O)-CF3]2Cu: bis-(hexafluoroacetylacetonate)copper(II) 

L-PLA: Poly-L-lactide 

PEG: Poly(ethylene glycol) 

PDMS-g-PA: poly(dimethylsiloxane)-grafted-polyacrylate 

PMMA: Poly(methyl methacrylate) 

PPG:Poly(propylene glycol) 

PS: Poly(styrene) 

PVB: poly(4-vinylbiphenyl) 

PVDF: poly(vinylidene fluoride) 

SmCo5: Samarium cobalt 
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Appendix B. Supercritical Encapsulation Patents Literature 

Author Patent # Method 

Akihisa N., Eiichi U., Chiaki 

N. (2005) 

JP 2005232053 Formulation of liposome-charged particles with a lipid film using SCCO2 in a RESS 

process. 

Benoit J. P., Richard J., Thies 

C. (1996) 

FR 2753639 

WO 96/13136 

A suspension of the active substance and a polar polymer in an organic solvent were 

precipitated with SCCO2 using a SAS process. 

Benoit J. P. , Rolland H., Thies 

C., Van de Velde V. (1996) 

EP 0706821 

WO 96/11055 

Particles were coated in a stirred vessel by precipitating the dissolved coating with T 

and P changes. 

Benoit J. P. , Rolland H., Thies 

C., Van de Velde V. (2000) 

US 6087003 Solid particles were coated by using SCCO2 and a coated material dissolved thereon. 

The pressure or temperature of the system is adjusted in such a way as to cause 

controlled precipitation of the coating material. 

Brunner G. and Werther J. 

(2006) 

EP 1731219 Process for encapsulating organic substances in particle form by spraying an inert 

supercritical carrier gas together with the coating material into a high pressure 

fluidized bed contained in an autoclave. 

Buerger A., Raschck T., Voigt 

N., Schwanke F. (2003) 

WO 03075881 Coating method for cosmetic application using a wax coating in a SCF fluidized bed. 

Cunningham M. F., Mahabadi 

H. K. (1996) 

US 5514514 Preparation of carrier powder polymer coatings which includes the supercritical 

polymerization of a monomer and surfactant in a SCF to form a porous polymer, 

after which a second polymer is incorporated. 

Dalian Medicine Institute 

(1998) 

CN 1221607 Lipoplast particles were coated with liposoluble medicines in a SCCO2 environment 

by the increase of T and decrease of P. 

Kobe Steel Ltd. (1993) J 05057166 RESS process where core, coating material and SCCO2 form a homogeneous system. 

Krause H., Niehaus M., Teipel 

U. (1998) 

DE 19711393 Coated 100 m particle with a coating agent dissolved in SCCO2 using RESS in a 

fluidized bed. 

Mishima K. (1999) 

 

JP 11197494 Production of organic-inorganic microcapsules using SCCO2 RESS process. 

Mishima K., Yamaguchi S. 

Umemoto H.,  (1996) 

JP 8104830 Patented the formation of micro-spheres by spraying a suspension of flavonoids in a 

supercritical solution of the polymer and a cosolvent at atmospheric pressure. 
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Appendix B (Continued) 

Author Patent # Method 

Mishima K., Mitani H. (1999) JP11047681 Inorganic particles were coated with PEG using SCCO2 in a RESS process, where 

the core and coating materials were solubilized in the SCF by using a cosolvent. 

Mishima K., Matsuyama K. 

(2006) 

KR 20060125871 A method for producing fine particles using rapid expansion into poor solvent from 

supercritical fluid. 

Perrut M. (2001) WO2001049407 Method for collecting and particles encapsulation using a coating agent and particles 

dispersed in a SCF by RESS. 

Pessey V., Cansell F., 

Chevalier B., Weill F., 

Etourneau J. (1999) 

FR 9904175 Coating of metallic particles was obtained by thermal decomposition of the coating 

material in a high pressure cell. 

Shine A., Gelb J. (1997) WO 98/15348 Microencapsulation of a core material by swelling a polymer coating with a SCF, 

followed by a RESS process. 

Subramanian B., Said S., 

Rajewski R. A., Stella V. 

(1997) 

WO 97/31691 An ASES process was patented where a solution with the coating agent was sprayed 

over the fluidized core particles. 

Subramanian B., Saim S., 

Rajejewski R. A., Stella V. 

(1998) 

US5833891 Method for particle precipitation and subsequence coating using a SCF with an 

antisolvent technique. 

Sunol A. K. (1997) US 0062332 Using a temperature swing, the polymer coating was precipitated over the insoluble 

particle core. 

Wang Y., Pfeffer R., Dave R. 

(2004) 

WO2004091571 Preparation of coated nanoparticles with SCCO2 antisolvent method. 

Wang Y., Pfeffer R., Dave R. 

(2009) 

US 7537803 Polymer coating/encapsulation using supercritical antisolvent process. 

Yunquing K., Guangfu Y., 

Yandong Y.‟ Zhongbing H.‟ 

Xiaoming L. (2008) 

EP 1731219 Preparation of praclitaxel carried medicine sustained-release microsphere by 

supercritical fluid technique.  
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Appendix C. Operating the Phase Analyzer 

1. Start Up 

a) Turn on syringe pump cooler. 

b) Let the cooler temperature reach at least –3
o
C before beginning experiments. 

c) Turn on syringe pump controller. 

d) Turn on syringe pump. 

e) Open the valve on the CO2 tank. 

f) Open the inlet valves into the syringe pump and check that the outlet valves 

(syringe pump) are closed. 

g) Press REFILL on the syringe pump controller to fill the syringe pump, select 

pump A or B, flow rate no higher than 5 ml/min. 

h) When the syringe pump is full, press STOP on the syringe pump controller, then   

press pump A or B (depending on which pump you are working with). 

i) Close the inlet valves on the syringe pump. 

j) Turn on the TV and put in a video for recording purposes. 

k) Turn on the phase analyzer controller. 

l) Turn on the magnetic stirrer on the phase analyzer. 

m) Press the Video Input Button on the phase analyzer controller to get video feed 

into the TV. 

n) To make a temperature set point for experiment runs, press the down arrow on the 

phase analyzer controller to SPM Settings. 

o) Once blinker is on SPM Settings press the Enter Button. 

p) Enter the temperature at which you want to run experiments. 
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Appendix C (Continued) 

q) Press the Enter Button and then press the Escape Button to return to the main 

menu of the phase analyzer controller. 

r) To enter sample numbers, go to Sample on the phase analyzer, then enter sample 

numbers. Press the Enter Button, then input whatever sample number you want. 

s) Press the Enter Button after designating a sample number for your experiment. 

 

2. Running Experiments 

a) Weigh solid sample and record the mass, or measure out liquid sample and record 

the volume. 

b) Unscrew the magnetic stirrer from the phase analyzer. 

c) Put liquid/solid sample into the solubility cell. 

d) Put the magnetic stirrer back on the phase analyzer and tighten it. 

e) Make sure the outlet valve on the phase analyzer is closed. 

f) Open the outlet valves on the syringe pump. 

g) On the syringe pump controller, press RUN.  Make sure the flow rate is 1 ml/min.  

h) Open the inlet valve of the phase analyzer slowly to let CO2 into the solubility cell 

until a pressure of 5-7 bar is reached, then close the inlet valve of the phase 

analyzer and open the outlet valve slowly to release the air trapped in the cell. 

Repeat this process 10 times, and check that the cell outlet valve remains closed 

after every purge. 

i) After the air purging is done, stop the syringe pump and take notes about the 

pressure and volume at the syringe pump controller. 
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Appendix C (Continued) 

j) Now press RUN on the syringe pump controller and open the cell inlet valve to 

fill up the cell with CO2. Recommended flow rate is 1-3 ml/min. volume with the 

manual pump (this will take a few minutes depending on the pressure required). 

k) The temperature recommended to fill up the cell is room temperature. Once the 

cell is full, the temperature can be adjusted. 

l) Once the required pressure is reached, press STOP on the syringe pump 

controller. Close both outlet valves to syringe pump and close the phase analyzer 

inlet valve. 

m) Stop the syringe pump flow rate – close both outlet valves to syringe pump. 

n) Record the final pressure and temperature at the syringe pump controller (this data 

is needed to calculate the amount of CO2 used in the experiment). 

o) Adjust temperature (START UP procedure n to q) and press the HEAT ON button 

on the phase analyzer controller to bring the cell up to the experiment 

temperature.   

p) Adjust volume by turning the manual pump. 

q) Once the operation conditions for the experiment are reached, unlock the hinge on 

the phase analyzer and shift the phase analyzer until it is horizontal or slightly 

past horizontal to get some sample in the camera‟s view cell.  If the sample is a 

solid you should see some solid in the window.  If the sample is liquid a liquid-

liquid interface should be visible in cell window. 

r) Wait at least 3h for the system to stabilize.  
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Appendix C (Continued) 

s) Record the pressure on the phase analyzer and the manual pump as well as the 

temperature. 

t) Watch the sample while increasing the pressure to determine if it has dissolved 

into the CO2. 

u) Once no solid or no liquid-liquid interface is detected (turn on the magnetic stirrer 

for a few seconds to make sure).  Record this pressure on the phase analyzer, the 

manual pump gauge, and the volume of the cell. 

v) If more than one phase is observed, increase the pressure by turning the manual 

pump to the right. 

w) Watch the sample while increasing the pressure to determine if it has dissolved 

into the CO2.   

x) Decrease the pressure drastically by turning the manual pump to the left until a 

cloud point is observed. 

y) Record this pressure on the phase analyzer, the manual pump gauge, and the 

volume of the cell.   

z) Continue increasing and decreasing the pressure as described above for precision 

purposes to get 5 points to average out for calculations.  Record pressures and 

volumes properly.  (It might also be wise to indicate 1 phase or 2 phases for each 

pressure and volume as well). 

aa) Change the temperature, let the system stabilize and re-run the experiment at the 

new operation conditions. 
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Appendix C (Continued) 

3. Clean Up 

Once the experiment is done and data is gathered, the system needs to be cleaned 

before any other experiment can be run. 

a) Stop recording the experiment. 

b) Press the Heat-Off Button on phase analyzer controller. Let the cell cool to room 

temperature. It will take a while for the cell to return to room temperature, 

depending on the experiment temperature used. 

c) Unlock pivot and put cell into upright position. 

d) Open the phase analyzer outlet valve slowly to vent the pressure. Opening the 

outlet valve too fast will result in clogging the outlet valve. 

e) Unplug the magnetic stirrer and carefully unscrew the cap (the cell may still be 

pressurized even if phase analyzer controller says 0 bar). 

f) Collect the remaining sample inside the cell. 

g) Disconnect and remove the lamp, camera, thermocouples, inlet and outlet valves, 

and the pressure gauge on the phase analyzer.   

h) Carefully unscrew the solubility cell from the phase analyzer (do not twist the 

heaters‟ wires connected to the cell). 

i) Clean the cell using an appropriate solvent and a q-tip, so as not to scratch the 

wall‟s surface. 

j) Remove O-rings from the bottom of the solubility cell and wash them thoroughly 

with the appropriate solvent. 
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Appendix C (Continued) 

k) Remove frit from phase analyzer or the solubility cell carefully (depending on 

which frit you use – fixed frit is in the cell, the movable frit is screwed onto the 

piston) and rinse thoroughly with the solvent. 

l) Clean out the inlet and outlet valves of the phase analyzer with the solvent. 

m) Wash the magnetic stirrer with the solvent. 

n) Clean each component with compressed nitrogen as well (this aids in removing 

very fine solid particles). 

o) Reassemble the system and refill the phase analyzer with pure CO2 or the mix 

solvent- CO2. 

p) Proceed to run the system at the same operation conditions (pressure and 

temperature) of the experiment in order to dissolve any remaining solute. 

q) This cleaning procedure should be done as many times as needed, until no solute 

(liquid or solid) stays inside the phase analyzer. 

 

4. Shut Down 

 Once the cleaning process is done, follow the instructions to shut down the 

system. 

a) Press the Heat-Off Button on phase analyzer controller. Let the cell cool to room 

temperature. 

b) Open the phase analyzer outlet valve slowly to vent the pressure. 

c) Open the syringe pump outlet valves to vent the remaining CO2 through the phase 

analyzer. 
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Appendix C (Continued) 

d) Turn off the syringe pump. 

e) Turn off the syringe pump controller. 

f) Turn off the cooler. 

g) Return the manual pump displacement to zero. 

h) Turn off the TV. 

 

5. Reassembly 

a) Put frit back into place (into the solubility cell or onto the piston, depending on 

which one you use). 

b) Put both O-rings back into place on the bottom of the solubility cell. 

c) Carefully tighten the solubility cell back onto the phase analyzer. 

d) Install and connect the lamp, camera, thermocouples, inlet and outlet valves, and 

pressure gauge on the phase analyzer. 

e) Carefully screw magnetic stirrer cap back on top of the phase analyzer.  
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Appendix D. Operating the Dynamic Solubility Set-Up 

 

1. Glassware Pre-Treatment 

a) Prepare a 5% solution of HMDS in dichloromethane (DCM). 

b) Fill the glassware and soak the glass wool with this solution.  

c) Put on the oven at 250 C for 1 hr. 

d) Wait for cool down, pass some DCM and let it dry. 

 

2. Start Up  

a) Turn on the syringe pump cooler (Lauda Ecoline RE120), the immersion 

circulator (Model 7300, Fisher) at the water bath and the heating tape over the 

back pressure regulator. 

b) Let the cooler temperature reach at least –3
o
C before beginning experiments. 

c) Turn on syringe pump controller. 

d) Turn on syringe pump. 

e) Open the valve on the CO2 tank. 

f) Open the inlet valves into the syringe pump and check that the outlet valves 

(syringe pump) are closed. 

g) Press REFILL on the syringe pump controller to fill the syringe pump, select 

pump A or B, flow rate no higher than 5 ml/min. 

h) When the syringe pump is full, press STOP on the syringe pump controller, then   

press pump A or B (depending on which pump you are working with).  

i) Close the inlet valves on the syringe pump. 
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3. Running Experiment 

a) Weigh solid sample and record the mass. 

b) Weigh the extraction cell by itself. 

c) Prepare the cell as follows: first place a piece of stainless steel mesh at the bottom 

of the cell, then put in a layer of the treated glass wool, followed by the weighted 

solute. Before closing the cell, place at the closing top of it the metallic mesh and 

then another glass wool layer. The cell should be tight over the wise to assure a 

tight fit. 

d) Weigh the loaded cell. 

e) Place the extraction cell in the system. 

f) Set the working pressure on the BPR using the nitrogen tank.   

g) Open the outlet valves on the syringe pump. 

h) Check for leaks through all the system. 

i) Set the set-up to run through the bypass line until the operation conditions are 

reached (T and P). 

j) On the syringe pump controller, press RUN and wait until the required pressure is 

reached (100-120 bar).  Make sure the flow rate is 1 ml/min. 

k) Turn on the HPLC pump. 

l) Press the DIRECT button. 

m) Select the appropriate component line (A, B, C or D) and fix the flow rate at the 

HPLC pump. Press ENTER. 
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n) Run the pumps for 2 to 3 h until the conditions (T and P) are stable. The 

supercritical mix will be passing through the bypass section until the system 

reaches the equilibrium. 

o) Switch the supercritical mix to the extraction cell. 

p) Set the collection vessel with a measured volume of DI water. 

q) Register P and T at the system. 

r) Start the Wet Test Meter. 

s) Register the volume, pressure and temperature in the ISCO pump. 

t) Collect samples for a period of 4 h. 

u) Stop both pumps after the collection period. 

v) Register P, T and volume in the ISCO pump. 

w) Register total CO2 volume and T in the Wet Test Meter. 

 

4. Clean Up 

a) Change the collection vessel. 

b) Switch the flow through the bypass section. 

c) Run the HPLC pump for 1 h (1ml/min), and then stop it. 

d) Run the ISCO pump for 2 h with a flow rate higher than the one used for the 

extraction process (5 ml/min).  

e) After one hour switch back the CO2 flow to the extraction cell in order to 

eliminate residual DMSO. 

f) Open the cell and remove the glass wool and metallic mesh from both ends.  
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g) Clean the cell with water, followed by alcohol. 

h) Use nitrogen to dry the cell. 

 

5. Shut Down 

a) Stop the ISCO pump.  

b) Turn off the water heater and let the system cool down. 

c) Release the system‟s pressure. 

d) Turn off the pump‟s chiller. 

e) Turn off the pumps. 

f) Unscrew the extraction cell carefully and let it dry completely. 

g) Weigh the dry cell. 

 

6. Reassembly 

a) Change the Teflon tape in all the cell connections. 

b) Check that the cell is clean and completely dry. 

c) Put together the extraction cell following the same procedure (a, b, c and d) 

explained in the Running Experiment section. 
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Appendix E. Operating the Encapsulation Set-Up  

 

1. Start Up 

a) Turn on the pump chiller, the heater at the insulation box and the heating tape 

over the back pressure regulator (BPR). 

b) Set the pressure at the back pressure regulator. 

c) Turn on the camera and the light inside the insulation box. 

d) Let the chiller temperature reach at least 0
o
C before starting the pump. 

e) Turn on the continuous pump.  

f) Check that the outlet valve of the pump is closed. 

g) Open the valve on the CO2 tank. 

h) Press F2 on the pump controller, select E (flow) and then input the flow rate 

(usually start with 4g/min). Increase the flow rate by pressing F2 and then E, set 

desired flow rate, ENTER; use 5g/min increments until the operation condition is 

reached. 

i) Very slowly, open the outlet valve on the high pressure pump. 

j) Turn on the heating tape over the coating cell. 

k) Check for leaks, and wait until the operation conditions are reached and the 

particles to be coated are fluidizing inside the cell. 

 

2. Running Experiment 

a) Weigh solid to be coated and record the mass. 

b) Load the coating cell with the solid sample. 
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c) Place the coating cell in the system. 

d) Follow the START UP procedure. 

e) Turn on the WTM. Using a stop watch, start the time and the WTM 

simultaneously. 

f) Turn on the HPLC pump. 

g) Press the DIRECT button. 

h) Select the appropriate component line (A, B, C or D) and fix the flowrate at the 

HPLC pump. Press ENTER. 

i) Open the outlet valve of the HPLC pump, when the pressure in the HPLC 

controller slightly exceeds the pressure in the coating system. 

j) Run the HPLC pump for 10 to 20 min (depending on the coating required). 

k) Close the outlet valve on the HPLC pump. Change the flow rate to zero, and then 

press ENTER to stop the coating mix flow. 

l) Set the collection vessel with a measured volume of DI water. 

m) Register P and T at the system. 

n) Register the flow rate and pressure in the continuous pump. 

o) Collect water samples every hour and take it to the UV, until all the DMSO is 

extracted from the coating cell. 

p) Stop pumping CO2 after the collection period. 

q) Register total CO2 volume and T in the Wet Test Meter. 

r) Register T1 (cell inlet temperature), T2 (cell outlet temperature) and T4 (box 

temperature). 
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3. Clean Up 

After stopping the CO2 pump continue with the cleaning procedure. 

a) Turn off the heater at the insulation box and the heating tape of the coating cell. 

b) Release the pressure of the system using the BPR until atmospheric pressure is 

reached. 

c) Separate the coating cell from the CO2 line and the coating line. 

d) Run the HPLC pump with DMSO for twenty minutes using a flow rate of 5 

ml/min through the coating line, to dissolve remaining polymer and avoid 

clogging.  

e) Open the cell and remove the coated material and put into the desiccator.  

f) Clean the cell with a dry cloth, and then use nitrogen to blow away the remaining 

powder. 

 

4. Shut Down 

a) Turn off the pump chiller, the heating tape over the BPR, the camera and the TV 

monitor. 

b) Close the valves of the CO2 and N2 tanks. 

c) Check that all the manometers or pressure indicators show atmospheric pressure, 

and then turn off both pumps. 
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5. Reassembly 

a) Prepare the coating vessel as follows: put the central chamber over one of the side 

windows-cover set, load the cell with the weighted core material, place the other 

window and cover over the central chamber. Using a torque wrench, tighten nuts 

in 5 ft.lb increments following the tightening sequence in Figure E.1, until the 

torque value of 30ft.lb is reached. 

 

Figure E.1. Nut Tightening Sequence. 

 

b) Set the loaded coating cell inside the insulation box. 

c) Tighten the ¼ inlet and outlet CO2 connections of the cell to the CO2 line. 

d) Tighten the 1/16 inlet coating connection of the cell to the HPLC line.  
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Appendix F. Fluidization Calculations 

 

Using the correlation established for Wen and Yu in 1966 for 0.001 < Re < 4000, 

the minimum fluidization velocity was calculated: 

7.3 3
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0 4 0 8.07.3 3
du
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2

CO

COCa OCO

3
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CO

COpm f

2

22

2

2       (1) 

As an example for the calculations, the operation conditions considered were 

P=100 bar and T = 320 K. At these conditions from the IUPAC table, the molar volume 

for carbon dioxide is 97.919 cm
3
/mol, and the viscosity is 3.26 K/m s. As the molecular 

weight of the carbon dioxide was 44, the density at the base operation conditions was 

449.35 Kg/m
3
. 

As was presented in Chapter 4 in Table 4.6, the density of the calcium oxide was 

3300Kg/m
3
, for the calculations presented next, the size particle considered was 5 micron 

or 5 x 10
-6

 m.  

Using equation 1, the Reynolds number obtained was 0.001, then solving for the 

minimum fluidization velocity, umf: 

2

2

COp

CO
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d
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u             (2) 

The minimum fluidization velocity obtained was 1.3 x10
-5

 m/s. The CO2 pump 

input data units were grams/minute (g/min), then using the inlet transversal area on the 

encapsulation cell and the density of the CO2 at the conditions inside the pump the 

required flow was calculated. 
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Next, the minimum mass fluidization mass flow ( mfM ) was obtained from umf, 

which is known as the minimum fluidization velocity. This is also sometimes referred to 

as the velocity at incipient fluidization ("incipient" means "about to begin"). After this, 

the flow rate was limited on one side by umf (minimum flow) and on the other side by the 

terminal (ut) or free fall velocity of the particles (maximum flow). 
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Replacing these values of the drag coefficient Cd in equation 3 the following 

expressions were obtained: 

4.0Refor
18

dg
u p

CO

2

pCOCaO

spher i cal,t

2

2           (6) 

5 0 0Re4.0fo rd
g

2 2 5

4
u pp

3/1

COCO

22

COCaO

s pher i ca l,t

22

2         (7) 

 



www.manaraa.com

 

 194 

Appendix F (Continued) 

For the Reynolds number of 0.001, the terminal velocity was calculated with 

equation 6, and the value obtained was 6.36x10
-4

 m/s. Following the same procedure 

explained previously to calculate the volumetric flow and mass flow, the results obtained 

were: 

min/g10M

s/m10x69.1V

t

37

t
 

 

The same calculations were done for the TiO2, but in this case the value of density 

of the calcium oxide of 3300Kg/m
3
 was substituted by the density of titanium dioxide of 

4200 Kg/m
3
. 

Assuming spherical particles for an average pressure of 100 bar, the values 

obtained are shown in Tables F.1 and F.2. 

Table F.1. Flow Required to Fluidize CaO 2 m and 5 m Particles. 

T ( C) 
mfM  (g/min) 

0.5 m  

tM  (g/min)  

0.5 m 

mfM  (g/min)  

2 m  

tM  (g/min) 

 2 m 

mfM  (g/min) 

 5 m 

tM  (g/min) 

 5 m 

37 1.87E-03 0.82 0.03 3.28 0.19 8.20 

38 1.90E-03 0.84 0.03 3.37 0.19 8.41 

39 1.92E-03 0.86 0.03 3.45 0.19 8.62 

40 1.94E-03 0.88 0.03 3.53 0.19 8.81 

41 1.96E-03 0.90 0.03 3.60 0.20 9.00 

42 1.97E-03 0.92 0.03 3.67 0.20 9.19 

43 1.99E-03 0.94 0.03 3.74 0.20 9.36 

44 2.00E-03 0.95 0.03 3.81 0.20 9.53 

45 2.02E-03 0.97 0.03 3.88 0.20 9.69 

46 2.03E-03 0.99 0.03 3.94 0.20 9.85 

47 2.04E-03 1.00 0.03 4.00 0.20 10.00 
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Appendix F (Continued) 

 

Table F.2. Flow Required to Fluidize TiO2 1 m and 2 m Particles. 

T ( C) 
mfM  (g/min)  

0.5 m 

tM  (g/min) 

 0.5 m 

mfM  (g/min)  

1 m 

tM  (g/min)  

1 m 

mfM  (g/min) 

 2 m 

tM  (g/min) 

 2 m 

37 2.52E-03 1.00 0.01 2.00 0.04 3.99 

38 2.54E-03 1.02 0.01 2.05 0.04 4.09 

39 2.56E-03 1.05 0.01 2.09 0.04 4.18 

40 2.58E-03 1.07 0.01 2.13 0.04 4.27 

41 2.60E-03 1.09 0.01 2.18 0.04 4.35 

42 2.62E-03 1.11 0.01 2.22 0.04 4.44 

43 2.63E-03 1.13 0.01 2.26 0.04 4.51 

44 2.65E-03 1.15 0.01 2.30 0.04 4.59 

45 2.66E-03 1.17 0.01 2.33 0.04 4.66 

46 2.67E-03 1.18 0.01 2.37 0.04 4.74 

47 2.69E-03 1.20 0.01 2.40 0.04 4.81 

 

As can be seen from the tables, operating at constant pressure even a T of 10 C 

did not cause major adjustments on the CO2 flow rate required to fluidize the particles, 

compared to the effect of particle size. As the samples presented a variable particle size 

which facilitates the fluidization, the best results were obtained for 2-5 g CO2/min.
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Appendix G. UV Calibration 

The first set of UV analysis consisted of running the UV with an empty 

disposable cuvette and two different solutions (Chitosan-DMSO-water solution in a 

quartz cuvette and water-Chitosan in a quartz cuvette (Figure G.1)). The idea of these 

measurements was to determine first if a disposable (PMMA) or quartz cuvette should be 

used for Chitosan determination, and the answer for this was any of them, since the 

Chitosan peak shows at 294 nm where there is no interference of the cuvette materials at 

this wavelength. Then as the disposable cuvettes were more accessible and were proven 

not to interfere with the samples, these were chosen.  
Cuvette Evaluation for Water-DMSO-Chitosan System
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Empty PMMA cuvette vs air

 

Figure G.1. Cuvette Evaluation for Water-DMSO-Chitosan System. 
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The next set of experiments consisted in running two solutions of Chitosan-

DMSO-water and changing the DMSO concentration in order to observe any interference 

on the Chitosan determination. Chitosan has two peaks, one at 195 nm and another at 294 

nm. The first one cannot be used because it saturates the instrument and overlaps with the 

DMSO peak. Due to these results, Chitosan concentration will be obtained from the peak 

at 294 nm, since DMSO and Chitosan peaks in the region 195-245 nm cannot be de-

convoluted, and UV cannot be used to determine DMSO concentration.  

Finally, a set of Chitosan-water solutions were prepared in order to construct a 

calibration curve using disposable cuvettes, as was proven that neither the DMSO nor the 

cuvette material represent an interference for this analysis. UV Calibration Data Chitosan-Water
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Figure G.2. UV Spectra for Chitosan-Water Solutions.  Reference peak 294 nm. 
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Figure G.2 shows the UV plots and an absorption band at 294 nm for all 

Chitosan-Water solutions prepared to build a calibration curve based on Chitosan 

absorption. This curve is required in order to determine the Chitosan concentration on the 

solution collected at the end of the dynamic solubility set-up. 

The UV spectrum for Chitosan reported in the bibliography (Muzzarelli 1973, 

Siokonkowska 2004, Guanghan 2006) mention absorption bands of 250nm, 278nm, 

280nm, 295nm depending on the molecular weight and the UV exposure of the sample, 

given that the chromophores responsible for the UV absorption are related to the carbonyl 

and amino groups in the Chitosan (Andrady 1996). 

With the readings obtained at the absorption band of 294 nm for six different 

solutions of Chitosan-Water, a calibration curve was built; this data is presented as a 

linear relation in Figure G.3.  
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Appendix G (Continued) Calibration Data Chitosan Water (294 nm)
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Figure G.3. Calibration Curve for Chitosan-Water Solutions Wavelength 294nm.  
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Appendix H. Quantification of Carbon Dioxide During Solubility Experiments 

 

The amount of carbon dioxide used during the solubility experiments was 

determined in two different ways: by using the Improved Rackett Equation (IRE) and by 

direct measurement with a Wet Test Meter (WTM). 

When running solubility experiments, the carbon dioxide was fed into the system 

with a syringe pump. The body or tank of the pump was kept at a constant temperature of 

-3 C (270.15 K) and the controller of the pump had a screen reporting temperature, 

pressure and volume readings in the syringe tank at all the times, providing a way to 

measure the amount of carbon dioxide in the feed. 

The Improved Rackett Equation (IRE) can be written as: 

 

      (1) 

 

This is a simple equation. No arbitrary constants are required and the only 

information needed is the critical properties of the substance to be evaluated. In addition, 

this equation has been reported to be able to predict reasonable results between the triple 

point and the critical point for most substances (Spencer, 1972). 

By using the subsequent data and IRE the moles of CO2 fed to the system were 

calculated as follows. 
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Table H.1. Data for IRE Calculations. 

Experimental Data Constants and CO2 Critical Properties 

Tpump = -3 C= 270.15 K 

R= 83.1447  

VCO2 (l) = 360.28cm
3
 (vol. of liquid carbon 

dioxide in the syringe pump at -3C) 

Pc= 73.7 bar 

Tc= 304.18K 

Zc= 0.2736 

 

 (2) 

The experimental data obtained from the dynamic set-up calculated using the IRE 

is presented in table H2. 

Table H.2. CO2 Feed from IRE Calculations. 

Tpump ( C) Tpump ( K) VCO2,l (cm
3
) 1/  (cm

3
/mol) NCO2 

-3.00 270.15 360.28 46.91 7.68 

-3.00 270.15 315.00 46.91 6.72 

-3.00 270.15 288.18 46.91 6.14 

-3.00 270.15 299.15 46.91 6.38 

-3.00 270.15 295.00 46.91 6.29 

-3.00 270.15 278.00 46.91 5.93 

-3.00 270.15 235.00 46.91 5.01 

-3.00 270.15 365.00 46.91 7.78 

 

After passing through the solubility set-up, the carbon dioxide was released in its 

gas  phase  and  the  volume of the gas released  was measured  with  a  Wet  Test  Meter  
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located at the end of the experimental system. While the experiment was run, the total 

operation time as well as the room temperature was registered, so by considering it as an 

ideal gas, the moles of CO2 released could be easily calculated. 

   (3) 

The experimental data obtained from the dynamic set-up calculated using the 

WTM is presented in table H3. 

Table H.3. CO2 Feed from WTM Measurements. 

TWTM ( C) TWTM ( K) VWTM (cm
3
) NCO2 

24.40 297.55 190323.60 7.70 

25.40 298. 55 172111.80 6.94 

25.00 298.15 153456.00 6.19 

24.20 297.35 154769.60 6.26 

24.00 297.15 158895.30 6.43 

24.50 297.65 146790.00 5.93 

26.20 299.35 125334.50 5.04 

25.20 298.35 192015.40 7.74 

 



www.manaraa.com

 

 203 

Appendix I. Quantification of Chitosan and DMSO During Encapsulation Experiments 

 

The polymer used in this research, Chitosan Oligosaccharide Lactate, is soluble in 

DMSO at room temperature for concentrations not higher than 17% w/w, as presented in 

Chapter 6. Accordingly, it was more practical to prepare the liquid solutions of DMSO-

Chitosan previous to starting the encapsulation experiments, and the feed composition for 

these components was determined from the feed rate set on the HPLC pump, the 

concentration of the solution and the operation time. The other component for the 

encapsulation mixture was the carbon dioxide, and the feed information was obtained 

from the continuous pump. 

 

Table I.1. Feed Composition for Encapsulation Experiments 

System Encapsulation Operation Conditions Feed Composition 

Component P (bar) T (ºC) t (min) Core (g) Chitosan (g) DMSO (g) CO2 (g) 

CaO 111.0 48.9 30 0.10 0.10 5.50 60 

CaO 119.0 41.9 50 0.30 0.14 15.85 96 

CaO 119.8 44.8 45 0.20 0.14 14.86 90 

TiO2 110.0 45.0 73 0.20 0.21 12.00 146 

TiO2 120.0 44.0 60 0.20 0.09 22.00 80 

 

 

 

In order to be able to explain the encapsulation mechanism evaluating the effect 

of the feed composition and the operation conditions, the predicted amount of Chitosan 

and DMSO that could precipitate in the encapsulation cell was estimated by using the 

following expression:  
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Pm S f S
c T ,P

F

t        (1)
 

where: 

Pm: precipitated material (g) 

Sf: Solubility in the feed 

Sc: Solubility in the bed (from solubility experimental data) 

F: Feed rate (g/min) 

t: contact time (min) 

Based on the solubility data obtained experimentally for the system Chitosan-

DMSO-SCCO2, the feed composition and the operation conditions evaluated in the 

encapsulation the estimated amount of material precipitated inside the cell is presented in 

the following tables. 

Table I.2. Chitosan Mass Balance from Solubility Data 

Encapsulation Operation Conditions Composition 

P (bar) T (ºC) t (min) 
Chitosan 

(g) 

Feed  

Sf 

Cell 

Sc 

Precipitate 

Pm (g) 

111.0 48.9 30 0.10 1.5243E-3 9.7800E-6 1.5146E-4 

119.0 41.9 50 0.14 1.2858E-3 2.3100E-5 1.8183E-4 

119.8 44.8 45 0.14 1.2858E-3 1.2900E-5 1.7185E-4 

110.0 45.0 73 0.21 2.2480E-3 1.0000E-5 4.6999E-4 

120.0 44.0 60 0.10 5.2848E-4 1.2917E-5 4.6401E-5 
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Table I.3. DMSO Mass Balance from Solubility Data at the Cell 

Encapsulation Operation Conditions Composition 

P (bar) T (ºC) t (min) 
DMSO 

(g) 

Feed  

Sf 

Cell 

Sc 

Precipitate 

Pm (g) 

111.0 48.9 30 5.50 1.0701E-1 8.3869E-2 1.2726E-1 

119.0 41.9 50 15.85 1.4149E-1 1.0700E-1 5.4657E-1 

119.8 44.8 45 14.86 1.4200E-1 1.4149E-1 7.5326E-3 

110.0 45.0 73 12.00 1.4136E-1 1.1000E-1 3.7628E-1 

120.0 44.0 60 22.00 1.4215E-1 1.4157E-1 1.2926E-1 

 

Table I.4. Mass Balance from Solubility Data DMSO Removal 

Encapsulation Operation Conditions Composition 

P (bar) T (ºC) t (min) 
CO2 

(g/min) 

Feed  

Sf 

Cell 

Sc 

Removed  

Pm (g) 

111.0 48.9 120 20 1.1000E-1 1.0700E-1 7.20 

119.0 41.9 40 40 1.6210E-1 1.0700E-1 8.82 

119.8 44.8 240 25 1.6000E-1 1.4200E-1 10.80 

110.0 45.0 180 15 1.4000E-1 1.1000E-1 8.10 

120.0 44.0 180 20 1.6000E-1 1.4157E-1 6.64 

  

The results obtained from the mass balances presented in these tables indicates 

that the solubility decreased inside the encapsulation cell, which is completely 

reasonable, and the temperature was raised at a constant pressure (Encapsulation 

Operation Conditions) to promote the polymer precipitation. The results from Table I.4 

indicate that the volume of SCCO2 used to remove DMSO was higher than required, 

which could cause Chitosan removal, reducing encapsulant thickness. For example, the  
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SCCO2 injected in the cell at 111 bar and 48.9ºC was enough to remove 7.2g of this 

chemical under these operation conditions, and the amount of DMSO inside the cell 

before its removal was 0.11g.  
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